Encyclopedia of Behavioral Medicine

Living Edition
| Editors: Marc Gellman

Sarcopenia

  • Oliver J. WilsonEmail author
  • Anton J. M. Wagenmakers
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6439-6_490-2

Synonyms

Definition

Sarcopenia is a syndrome characterized by a progressive generalized loss of skeletal muscle mass and strength with a risk of adverse outcomes such as physical disability, poor quality of life, and death. Sarcopenia is derived from Greek “sarx” for flesh and “penia” for loss.

Description

The global population aged 60 years or older is expected to more than double from 901 million in the year 2015 to 2.1 billion by 2050 (www.un.org). A common result of the aging process is the loss of skeletal muscle mass. This is associated with metabolic disease such as type 2 diabetes (Park et al. 2009), impaired physical performance (e.g., walking and rising from a chair), self-reported disability (Janssen et al. 2002), and the increased risk of accidental falls (Szulc et al. 2005) and fractures (Fiatarone Singh et al. 2009). Hip fractures are among the most common site of fracture in elderly individuals (Johnell and...

Keywords

Muscle Mass Resistance Training Resistance Exercise Skeletal Muscle Mass Muscle Protein Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References and Further Readings

  1. Aagaard, P., Suetta, C., Caserotti, P., Magnusson, S. P., & Kjaer, M. (2010). Role of the nervous system in sarcopenia and muscle atrophy with aging: Strength training as a countermeasure. Scandinavian Journal of Medicine & Science in Sports, 20, 49–64.CrossRefGoogle Scholar
  2. Andersen, J. L. (2003). Muscle fibre type adaptation in the elderly human muscle. Scandinavian Journal of Medicine & Science in Sports, 13, 40–47.CrossRefGoogle Scholar
  3. Baumgartner, R. N., Koehler, K. M., Gallagher, D., Romero, L., Heymstleld, S. B., Ross, R. R., Garry, P. G., & Lindeman, R. D. (1998). Epidemiology of sarcopenia among the elderly in New Mexico. American Journal of Epidemiology, 147(8), 755–763.CrossRefPubMedGoogle Scholar
  4. Bean, J. F., Leveille, S. G., Kiely, D. K., Bandinelli, S., Guralnik, J. M., & Ferrucci, L. (2003). A comparison of leg power and leg strength within the InCHIANTI study: Which influences mobility more? Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 58(8), 728–733.CrossRefGoogle Scholar
  5. Breen, L., Stokes, K. A., Churchward-Venne, T. A., Moore, D. R., Baker, S. K., Smith, K., Atherton, P. J., & Phillips, S. M. (2013). Two weeks of reduced activity decreases leg lean mass and induces “anabolic resistance” of myofibrillar protein synthesis in healthy elderly. Journal of Clinical Endocrinology and Metabolism, 98(6), 2604–2612.CrossRefPubMedGoogle Scholar
  6. Chodzko-Zajko, W. J., Proctor, D. N., Fiatarone Singh, M. A., Minson, C. T., Nigg, C. R., & Salem, G. J. (2009). Exercise and physical activity for older adults. Medicine & Science in Sports & Exercise, 41, 1510–1530.CrossRefGoogle Scholar
  7. Cruz-Jentoff, A. J., Baeyens, J. P., Bauer, J. M., Boirie, J. M., Cederholm, T., Landi, F., Martin, F. C., Michel, J. P., Rolland, Y., Schneider, S. M., Topinkova, E., Vandewoude, M., & Zamboni, M. (2010). Sarcopenia: European consensus on definition and diagnosis: Report of the European working group on sarcopenia in older people. Age and Ageing, 39(4), 412–423.CrossRefGoogle Scholar
  8. Cruz-Jentoft, A. J., Landi, F., Schneider, S. M., Zúñiga, C., Arai, H., Boirie, Y., Chen, L. K., Fielding, R. A., Martin, F. C., Michel, J. P., Sieber, C., Stout, J. R., Studenski, S. A., Vellas, B., Woo, J., Zamboni, M., & Cederholm, T. (2014). Prevalence of and interventions for sarcopenia in ageing adults: A systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age and Ageing, 43(6), 748–759.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fiatarone Singh, M. A., Singh, N. A., Hansen, R. D., Finnegan, T. P., Allen, B. J., Diamond, T. H., Diwan, A. D., Lloyd, B. D., Williamson, D. A., Smith, E. U., Grady, J. N., Stavrinos, T. M., & Thompson, M. W. (2009). Methodology and baseline characteristics for the sarcopenia and hip fracture study: A 5-year prospective study. Journal of Gerontolgical Advances in Biological Sciences and Medical Sciences, 64A(5), 568–574.CrossRefGoogle Scholar
  10. Frank, P., Andersson, E., Pontén, M., Ekblom, B., Ekblom, M., & Sahlin, K. (2016). Strength training improves muscle aerobic capacity and glucose tolerance in elderly. Scandinavian Journal of Medicine & Science in Sports, 26(7), 764–773.CrossRefGoogle Scholar
  11. Goodpaster, B. H., Park, S. W., Harris, T. B., Kritchevsky, S. B., Nevitt, M., Schwartz, A. V., Simonsick, E. M., Tylavsky, F. A., Visser, M., & Newman, A. B. (2006). The loss of skeletal muscle strength, mass, and quality in older adults: The health, aging and body composition study. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 61(10), 1059–1064.CrossRefPubMedGoogle Scholar
  12. Houston, D. K., Nicklas, B. J., Ding, J., Harris, T. B., Tylavsky, F. A., Newman, A. B., Lee, J. S., Sahyoun, N. R., Visser, M., Kritchevsky, S. B., & Health ABC Study. (2008). Dietary protein intake is associated with lean mass change in older, community-dwelling adults: The Health, Aging, and Body Composition (Health ABC) Study. American Journal of Clinical Nutrition, 87(1), 150–155.Google Scholar
  13. Janssen, I., Heymsfield, S. B., Wang, Z., & Ross, R. (2000). Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. Journal of Applied Physiology, 89(1), 81–88.PubMedGoogle Scholar
  14. Janssen, I., Heymsfield, S. B., & Ross, R. (2002). Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. Journal of the American Geriatrics Society, 50(5), 889–896.CrossRefPubMedGoogle Scholar
  15. Johnell, O., & Kanis. (2006). An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporosis International, 17, 1726–1733.CrossRefPubMedGoogle Scholar
  16. Koopman, R., & van Loon, L. J. (2009). Aging, exercise, and muscle protein metabolism. Journal of Applied Physiology, 106, 2040–2048.CrossRefPubMedGoogle Scholar
  17. Manini, T. M., & Clark, B. C. (2012). Dynapenia and aging: An update. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 67(1), 28–40.CrossRefGoogle Scholar
  18. Panula, J., Pihlajamäki, H., Mattila, V. M., Jaatinen, P., Vahlberg, T., Aarnio, P., & Kivela, S. L. (2011). Mortality and cause of death in hip fracture patients aged 65 or older – A population-based study. BMC Musculoskeletal Disorders, 12(105), 1–6.Google Scholar
  19. Park, S. W., Goodpaster, B. H., Lee, J. S., Kuller, L. H., Boudreau, R., de Rekeneire, N., Harris, T. B., Kritchevsky, S., Tylavsky, F. A., Nevitt, M., Cho, Y. W., & Newman, A. B. (2009). Excessive loss of skeletal muscle mass in older people with type 2 diabetes. Diabetes Care, 32, 1993–1997.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Rosenberg, I. (1989). Summary comments: Epidemiological and methodological problems in determining nutritional status of older persons. American Journal of Clinical Nutrition, 50, 1231–1233.Google Scholar
  21. Szulc, P., Beck, T. J., Marchand, F., & Delmas, P. D. (2005). Low skeletal muscle mass is associated with poor structural parameters of bone and impaired balance in elderly men – The MINOS study. Journal of Bone and Mineral Research, 20(5), 721–729.CrossRefPubMedGoogle Scholar
  22. Wagenmakers, A. J., vanRiel, N. A., Frenneaux, M. P., & Stewart, P. M. (2006). Integration of the metabolic and cardiovascular effects of exercise. Essays in Biochemistry, 42, 193–210.CrossRefPubMedGoogle Scholar
  23. Wagenmakers, A. J., Strauss, J. A., Shepherd, S. O., Keske, M. A., & Cocks, M. (2016). Increased muscle blood supply and transendothelial nutrient and insulin transport induced by food intake and exercise: Effect of obesity and ageing. Journal of Physiology, 594, 2207–2222.CrossRefPubMedGoogle Scholar
  24. Wall, B. T., Dirks, M. L., & van Loon, L. J. C. (2013). Skeletal muscle atrophy during short-term disuse: Implications for age-related sarcopenia. Ageing Research Reviews, 12, 898–906.CrossRefPubMedGoogle Scholar
  25. Wall, B. T., Cermak, N. M., & van Loon, L. J. C. (2014). Dietary protein considerations to support active ageing. Sports Medicine, 44(2), S185–S194.CrossRefPubMedGoogle Scholar
  26. Witard, O. C., McGlory, C., Hamilton, D. L., & Phillips, S. M. (2016). Growing older with health and vitality: A nexus of physical activity, exercise and nutrition. Biogerontology, 17, 529–546.CrossRefPubMedPubMedCentralGoogle Scholar
  27. www.un.org United Nations, Department of Economic and Social Affairs: Population Division. (2015). World population prospects: The 2015 revision, key findings and advance tables. Accessed 25 Aug 2016.

Copyright information

© Springer Science+Business Media LLC 2016

Authors and Affiliations

  1. 1.Institute for Sport, Physical Activity and LeisureLeeds Beckett UniversityLeedsUK
  2. 2.Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUK