Skip to main content

ACK1

  • Living reference work entry
  • First Online:
  • 163 Accesses

Synonyms

Activated Cdc42Hs-associated kinase 1; CD38 negative kinase 2; Proline-rich tyrosine kinase 1; Pyk1; Tnk2

Historical Background

The tyrosine kinase ACK1 (activated Cdc42Hs-associated kinase 1) was first identified as a specific target of the small GTPase Cdc42 (Manser et al. 1993). ACK1, a related tyrosine kinase Tnk1, and the nontyrosine kinase protein Mig6 (Gene 33/receptor-associated late transducer) constitute a family of proteins with conserved domain structures. In addition to the kinase catalytic domain, various domains and amino acid sequence motifs, which are responsible for the interaction with diverse signal transducing proteins, are found in ACK1 (Fig. 1). Several types of splice variants (including a protein previously designated ACK2 (activated Cdc42Hs-associated kinase 2)) are present. Two orthologs of the mammalian ACK1 gene, DACK and DPR2, exist in the Drosophila melanogaster genome. In Caenorhabditis elegans, two orthologs encode ACK family protein tyrosine...

This is a preview of subscription content, log in via an institution.

References

  • Buchwald M, Pietschmann K, Brand P, Günther A, Mahajan NP, Heinzel T, et al. SIAH ubiquitin ligases target the nonreceptor tyrosine kinase ACK1 for ubiquitinylation and proteasomal degradation. Oncogene. 2013;32:4913–20.

    Article  CAS  PubMed  Google Scholar 

  • Chan W, Sit ST, Manser E. The Cdc42-associated kinase ACK1 is not autoinhibited but requires Src for activation. Biochem J. 2011;435:355–64.

    Article  CAS  PubMed  Google Scholar 

  • Eisenmann KM, McCarthy JB, Simpson MA, Keely PJ, Guan JL, Tachibana K, Lim L, Manser E, Furcht LT, Iida J. Melanoma chondroitin sulphate proteoglycan regulates cell spreading through Cdc42, Ack-1 and p130cas. Nat Cell Biol. 1999;1:507–13.

    Article  CAS  PubMed  Google Scholar 

  • Galisteo ML, Yang Y, Ureña J, Schlessinger J. Activation of the nonreceptor protein tyrosine kinase Ack by multiple extracellular stimuli. Proc Natl Acad Sci USA. 2006;103:9796–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato J, Kaziro Y, Satoh T. Activation of the guanine nucleotide exchange factor Dbl following ACK1-dependent tyrosine phosphorylation. Biochem Biophys Res Commun. 2000;268:141–7.

    Article  CAS  PubMed  Google Scholar 

  • Kato-Stankiewicz J, Ueda S, Kataoka T, Kaziro Y, Satoh T. Epidermal growth factor stimulation of the ACK1/Dbl pathway in a Cdc42 and Grb2-dependent manner. Biochem Biophys Res Commun. 2001;284:470–7.

    Article  CAS  PubMed  Google Scholar 

  • Kelley LC, Weed SA. Cortactin is a substrate of activated Cdc42-associated kinase 1 (ACK1) during ligand-induced epidermal growth factor receptor downregulation. PLoS One. 2012;7:e44363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiyono M, Kato J, Kataoka T, Kaziro Y, Satoh T. Stimulation of Ras guanine nucleotide exchange activity of Ras-GRF1/CDC25Mm upon tyrosine phosphorylation by the Cdc42-regulated kinase ACK1. J Biol Chem. 2000;275:29788–93.

    Article  CAS  PubMed  Google Scholar 

  • Lei X, Li YF, Chen GD, Ou DP, Qiu XX, Zuo CH, et al. Ack1 overexpression promotes metastasis and indicates poor prognosis of hepatocellular carcinoma. Oncotarget. 2015;6:40622–41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin Q, Wang J, Childress C, Yang W. The activation mechanism of ACK1 (activated Cdc42-associated tyrosine kinase 1). Biochem J. 2012;445:255–64.

    Article  CAS  PubMed  Google Scholar 

  • Linderoth E, Pilia G, Mahajan NP, Ferby I. Activated Cdc42-associated kinase 1 (Ack1) is required for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor recruitment to lipid rafts and induction of cell death. J Biol Chem. 2013;288:32922–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linseman DA, Heidenreich KA, Fisher SK. Stimulation of M3 muscarinic receptors induces phosphorylation of the Cdc42 effector activated Cdc42Hs-associated kinase-1 via a Fyn tyrosine kinase signaling pathway. J Biol Chem. 2001;276:5622–8.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Karaca M, Zhang Z, Gioeli D, Earp HS, Whang YE. Dasatinib inhibits site-specific tyrosine phosphorylation of androgen receptor by Ack1 and Src kinases. Oncogene. 2010;29:3208–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lougheed JC, Chen RH, Mak P, Stout TJ. Crystal structures of the phosphorylated and unphosphorylated kinase domains of the Cdc42-associated tyrosine kinase ACK1. J Biol Chem. 2004;279:44039–45.

    Article  CAS  PubMed  Google Scholar 

  • Mahajan K, Lawrence HR, Lawrence NJ, Mahajan NP. ACK1 tyrosine kinase interacts with histone demethylase KDM3A to regulate the mammary tumor oncogene HOXA1. J Biol Chem. 2014;289:28179–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahajan K, Mahajan NP. Shepherding AKT and androgen receptor by Ack1 tyrosine kinase. J Cell Physiol. 2010;224:327–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahajan NP, Liu Y, Majumder S, Warren MR, Parker CE, Mohler JL, et al. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc Natl Acad Sci USA. 2007;104:8438–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manser E, Leung T, Salihuddin H, Tan L, Lim L. A non-receptor tyrosine kinase that inhibits the GTPase activity of p21 cdc42. Nature. 1993;363:364–7.

    Article  CAS  PubMed  Google Scholar 

  • Nur-E-Kamal A, Zhang A, Keenan SM, Wang XI, Seraj J, Satoh T, et al. Requirement of activated Cdc42-associated kinase for survival of v-Ras-transformed mammalian cells. Mol Cancer Res. 2005;3:297–305.

    Article  CAS  PubMed  Google Scholar 

  • Pao-Chun L, Chan PM, Chan W, Manser E. Cytoplasmic ACK1 interaction with multiple receptor tyrosine kinases is mediated by Grb2: an analysis of ACK1 effects on Axl signaling. J Biol Chem. 2009;284:34954–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prieto-Echagüe V, Gucwa A, Craddock BP, Brown DA, Miller WT. Cancer-associated mutations activate the nonreceptor tyrosine kinase Ack1. J Biol Chem. 2010;285:10605–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Satoh T, Kato J, Nishida K, Kaziro Y. Tyrosine phosphorylation of ACK in response to temperature shift-down, hyperosmotic shock, and epidermal growth factor stimulation. FEBS Lett. 1996;386:230–4.

    Article  CAS  PubMed  Google Scholar 

  • Shen F, Lin Q, Gu Y, Childress C, Yang W. Activated Cdc42-associated kinase 1 is a component of EGF receptor signaling complex and regulates EGF receptor degradation. Mol Biol Cell. 2007;18:732–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teo M, Tan L, Lim L, Manser E. The tyrosine kinase ACK1 associates with clathrin-coated vesicles through a binding motif shared by arrestin and other adaptors. J Biol Chem. 2001;276:18392–8.

    Article  CAS  PubMed  Google Scholar 

  • van der Horst EH, Degenhardt YY, Strelow A, Slavin A, Chinn L, Orf J, et al. Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc Natl Acad Sci USA. 2005;102:15901–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang W, Lin Q, Guan JL, Cerione RA. Activation of the Cdc42-associated tyrosine kinase-2 (ACK-2) by cell adhesion via integrin β1. J Biol Chem. 1999;274:8524–30.

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Lo CG, Dispenza T, Cerione RA. The Cdc42 target ACK2 directly interacts with clathrin and influences clathrin assembly. J Biol Chem. 2001;276:17468–73.

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama N, Miller WT. Biochemical properties of the Cdc42-associated tyrosine kinase ACK1: substrate specificity, authphosphorylation, and interaction with Hck. J Biol Chem. 2003;278:47713–23.

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Bellve KD, Fogarty KE, Melikian HE. Ack1 is a dopamine transporter endocytic brake that rescues a trafficking-dysregulated ADHD coding variant. Proc Natl Acad Sci USA. 2015;112:15480–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaya Satoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this entry

Cite this entry

Takenaka, N., Satoh, T. (2016). ACK1. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6438-9_475-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6438-9_475-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6438-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics