Skip to main content

CD91

  • Living reference work entry
  • First Online:
Encyclopedia of Signaling Molecules

Synonyms

Alpha-2-macroglobulin receptor (A2MR); Apolipoprotein receptor (APR); CD91; CED1; Low density lipoprotein receptor-related protein 1 (LRP1)

Historical Background

CD91, also known as the low density lipoprotein receptor-related protein 1 (LRP1), is a receptor on the plasma membrane involved in receptor-mediated endocytosis and in various signaling events. CD91 is a member of a gene family found in diverse species, including C. elegans, Drosophila, Xenopus, and mammals (Gaultier et al. 2008). Seven structurally closely related cell surface receptors constitute the core of the low density lipoprotein (LDL) receptor gene family. They include the LDL receptor, the LDL receptor-related protein (CD91), LRP1b, megalin, very low density lipoprotein (VLDL) receptor, apolipoprotein E receptor 2 (apo-ER2), and multiple epidermal growth factor-like domains containing protein 7 (MEGF7) (Herz and Strickland 2001). This review focuses on CD91 and its role as a signaling receptor for several...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Baek SH, Ohgi KA, Rose DW, Koo EH, Glass CK, Rosenfeld MG. Exchange of N-CoR corepressor and Tip60 activator complexes links gene expression by NFkappaB and beta-amyloid precursor protein. Cell. 2002;110:55–67.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee PP, Vinay DS, Mathew A, Raje M, Parekh V, Prasad DV, Kumar A, Mitra D, Mishra GC. Evidence that glycoprotein 96 (B2), a stress protein, functions as a Th2-specific costimulatory molecule. J Immunol. 2002;169:3507–18.

    Article  CAS  PubMed  Google Scholar 

  • Barnes H, Larsen B, Tyers M, Van Der GP. Tyrosine phosphorylated LDL receptor-related protein 1 (LRP1) associates with the adaptor protein Shc in Src-transformed cells. J Biol Chem. 2001;22:19119–25.

    Google Scholar 

  • Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity. 2001;14:303–13.

    Article  CAS  PubMed  Google Scholar 

  • Betts GN, van der Geer P, Komives EA. Structural and functional consequences of tyrosine phosphorylation in the LRP1 cytoplasmic domain. J Biol Chem. 2008;283:15656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder RJ. Heat-shock protein-based vaccines for cancer and infectious disease. Expert Rev Vaccines. 2008;7:383–93.

    Article  CAS  PubMed  Google Scholar 

  • Binder RJ, Han DK, Srivastava PK. CD91: a receptor for heat shock protein gp96. Nat Immunol. 2000;1:151–5.

    Article  CAS  PubMed  Google Scholar 

  • Boucher P, Liu P, Gotthardt M, Hiesberger T, Anderson RG, Herz J. Platelet-derived growth factor mediates tyrosine phosphorylation of the cytoplasmic domain of the low density lipoprotein receptor-related protein in caveolae. J Biol Chem. 2002;277:15507–13.

    Article  CAS  PubMed  Google Scholar 

  • Boucher P, Gotthardt M, Li WP, Anderson RG, Herz J. LRP: role in vascular wall integrity and protection from atherosclerosis. Science. 2003;300:329–32.

    Article  CAS  PubMed  Google Scholar 

  • Bu G, Sun Y, Schwartz AL, Holtzman DM. Nerve growth factor induces rapid increases in functional cell surface low density lipoprotein receptor-related protein. J Biol Chem. 1998;273:13359–65.

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Sudhof TC. A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science. 2001;293:115–20.

    Article  CAS  PubMed  Google Scholar 

  • Corvera S, Graver DF, Smith RM. Insulin increases the cell surface concentration of alpha 2-macroglobulin receptors in 3 T3-L1 adipocytes. Altered transit of the receptor among intracellular endocytic compartments. J Biol Chem. 1989;264:10133–8.

    CAS  PubMed  Google Scholar 

  • Dellinger MT, Brekken RA. Phosphorylation of Akt and ERK1/2 is required for VEGF-A/VEGFR2-induced proliferation and migration of lymphatic endothelium. PLoS One. 2011;6:e28947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentealba RA, Liu Q, Kanekivo T, Zhang J, Bu G. Low density lipoprotein receptor-related protein 1 promotes anti-apoptotic signaling in neurons by activating Akt survival pathway. J Biol Chem. 2009;284:34045–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardai SJ, Bratton DL, Ogden CA, Henson PM. Recognition ligands on apoptotic cells: a perspective. J Leukoc Biol. 2006;79:896–903.

    Article  CAS  PubMed  Google Scholar 

  • Gaultier A, Arandjelovic S, Li X, Janes J, Dragojlovic N, Zhou GP, Dolkas J, Myers RR, Gonias SL, Campana WM. A shed form of LDL receptor-related protein-1 regulates peripheral nerve injury and neuropathic pain in rodents. J Clin Invest. 2008;118:161–72.

    Article  CAS  PubMed  Google Scholar 

  • Guttman M, Betts GN, Barnes H, Ghassemian M, van der Geer P, Komives EA. Interactions of the NPXY microdomains of the low density lipoprotein receptor-related protein 1. Proteomics. 2009;22:5016–28.

    Article  Google Scholar 

  • Herz J, Strickland DK. LRP: a multifunctional scavenger and signaling receptor. J Clin Invest. 2001;108:779–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herz J, Hamann U, Rogne S, Myklebost O, Gausepohl H, Stanley KK. Surface location and high affinity for calcium of a 500 kDa liver membrane protein closely related to the LDL-receptor suggest a physiolocical role as lipoprotein receptor. EMBO J. 1988;7:4119–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kinchen JM, Ravichandran KS. Journey to the grave: signaling events regulating removal of apoptotic cells. J Cell Sci. 2007;120:2143–9.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Marzolo MP, van Kerkhof P, GJ S, Bu G. The YXXL motif, but not the two NPXY motifs, serves as the dominant endocytosis signal for low density lipoprotein receptor-related protein. J Biol Chem. 2000;275:17187–94.

    Article  CAS  PubMed  Google Scholar 

  • Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev. 2008;88:887–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lillis AP, Muratoglu SC, Au DT, Migliorini M, Lee MJ, Fried SK, Mikhailenko I, Strickland DK. LDL receptor-related protein-1 (LRP1) regulates cholesterol accumulation in macrophages. PLoS One. 2015;10:e0128903.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Mayo MW, Nagji AS, Smith PW, Ramsey CS, Li D, Jones DR. Phosphorylation of RelA/p65 promotes DNMT-1 recruitment to chromatin and represses transcription of the tumor metastasis suppressor gene BRMS1. Oncogene. 2012;31:1143–54.

    Article  PubMed  Google Scholar 

  • Liu CC, Hu J, Tsai CW, Yue M, Melrose HL, Kanekiyo T, Bu G. Neuronal LRP1 regulates glucose metabolism and insulin signaling in the brain. J Neurosci. 2015;35:5851–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llorente-CortĂ©s V, Royo T, Juan-Babot O, Badimon L. Adipocyte differentiation-related protein is induced by LRP1-mediated aggregated LDL internalization in human vascular smooth muscle cells and macrophages. J Lipid Res. 2007;48:2133–40.

    Article  PubMed  Google Scholar 

  • Loukinova E, Ranganathan S, Kuznetsov S, Gorlatova N, Migliorini MM, Loukinov D, Ulery PG, Mikhailenko I, Lawrence DA, Strickland DK. Platelet-derived growth factor (PDGF)-induced tyrosine phosphorylation of the low density lipoprotein receptor-related protein (LRP) Evidence for integrated co-receptor function betwenn LRP and the PDGF. J Biol Chem. 2002;277:15499–506.

    Article  CAS  PubMed  Google Scholar 

  • May P, Reddy YK, Herz J. Proteolytic processing of low density lipoprotein receptor-related protein mediates regulated release of its intracellular domain. J Biol Chem. 2002;277:18736–43.

    Article  CAS  PubMed  Google Scholar 

  • May P, Woldt E, Matz RL, Boucher P. The LDL receptor-related protein (LRP) family: an old family of proteins with new physiological functions. Ann Med. 2007;39:219–28.

    Article  CAS  PubMed  Google Scholar 

  • Messmer MN, Pasmowitz J, Kropp LE, Watkins SC, Binder RJ. Identification of the cellular sentinels for native immunogenic heat shock proteins in vivo. J Immunol. 2013;191:4456–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra UK, Gawdi G, Pizzo SV. Ligation of the alpha 2-macroglobulin signalling receptor on macrophages induces protein phosphorylation and an increase in cytosolic pH. Biochem J. 1995;309:151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawaria S, Binder RJ. CD91-dependent programming of T-helper cell responses following heat shock protein immunization. Nat Commun. 2011;2:521.

    Article  PubMed  PubMed Central  Google Scholar 

  • Quinn KA, Pye VJ, Dai YP, Chesterman CN, Owensby DA. Characterization of the soluble form of the low density lipoprotein receptor-related protein (LRP). Exp Cell Res. 1999;251:433–41.

    Article  CAS  PubMed  Google Scholar 

  • Roebroek AJ, Reekmans S, Lauwers A, Feyaerts N, Smeijers L, Hartmann D. Mutant Lrp1 knock-in mice generated by recombinase-mediated cassette exchange reveal differential importance of the NPXY motifs in the intracellular domain of LRP1 for normal fetal development. Mol Cell Biol. 2006;26:605–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedlacek AL, Kinner-Bibeau LB, Binder RJ. Phenotypically distinct helper NK cells are required for gp96-mediated anti-tumor immunity. Sci Report. 2016;6:29889.

    Article  Google Scholar 

  • Srivastava PK. Therapeutic cancer vaccines. Curr Opin Immunol. 2006;18:201–5.

    Article  CAS  PubMed  Google Scholar 

  • Terrand J, Bruban V, Zhou L, Gong W, El Asmar Z, May P, Zurhove K, Haffner P, Philippe C, Woldt E, Matz RL, Gracia C, Metzger D, Auwerx J, Herz J, Boucher P. LRP1 controls intracellular cholesterol storage and fatty acid synthesis through modulation of Wnt signaling. J Biol Chem. 2009;284:381–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yancey PG, Blakemore J, Ding L, Fan D, Overton CD, Zhang Y, Linton MF, Fazio S. Macrophage LRP1 controls plaque cellularity by regulating efferocytosis and Akt activation. Arterioscler Thromb Vasc Biol. 2010;30:787–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon C, Van Niekerk EA, Henry K, Ishikawa T, Orita S, Tuszynski MH, Campana WM. Low-density lipoprotein receptor-related protein 1 (LRP1)-dependent cell signaling promotes axonal regeneration. J Biol Chem. 2013;288:26557–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng G, Bachinsky DR, Stamenkovic I, Strickland DK, Brown D, Andres G, McCluskey RT. Organ distribution in rats of two members of the low-density lipoprotein receptor gene family, gp330 and LRP/alpa 2MR, and the receptor-associated protein (RAP). J Histochem Cytochem. 1994;42:531–42.

    Article  CAS  PubMed  Google Scholar 

  • Zhou YJ, Messmer MN, Binder RJ. Establishment of tumor-associated immunity requires interaction of heat shock proteins with CD91. Cancer Immunol Res. 2014;2:217–28.

    Article  CAS  PubMed  Google Scholar 

  • Zurhove K, Nakajima C, Herz J, Bock HH, May P. Gamma-secretase limits the inflammatory response through the processing of LRP1. Sci Signal. 2008;25:1:ra15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Binder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this entry

Cite this entry

Kinner-Bibeau, L.B., Pawaria, S., Binder, R.J. (2016). CD91. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6438-9_413-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6438-9_413-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6438-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics