Skip to main content

VDR, the Vitamin D Receptor

  • Living reference work entry
  • First Online:
Encyclopedia of Signaling Molecules

Synonyms

Calcitriol receptor; Nuclear receptor subfamily 1, group I, member 1 (NR1I1); Vitamin D receptor (VDR)

Historical Background

Almost from the time life began, vitamin D has been produced by plants and animals. As the structures of plants and animals became more complex, the sites of vitamin D production, its subsequent metabolism, as well as its sites of action separated. The ability to transport and metabolize vitamin D into more active forms therefore evolved. The metabolic active form 1,25(OH)2D3 of vitamin D exerts its actions through interaction with the vitamin D receptor, VDR (Bikle 2011). Although not as ancient, VDR has been highly conserved between species through evolution (Hochberg and Templeton 2010).VDR is found in almost all cells and tissues of higher-order animals, further emphasizing the importance of the receptor. Evidence for the existence of VDR was first provided in 1969 by Haussler and Norman (Feldman and Pike 2005), and since then a substantial amount...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology. 6th ed. Oxford, UK: Elsevier; 2007.

    Google Scholar 

  • Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C. Vitamin D, modulator of the immune system. Curr Opin Pharmacol. 2010;10:482–96.

    Article  CAS  PubMed  Google Scholar 

  • Bikle DD. Nonclassic actions of vitamin D. J Clin Endocrinol Metab. 2009;94:26–34.

    Article  CAS  PubMed  Google Scholar 

  • Bikle DD. Vitamin D, an ancient hormone. Exp Dermatol. 2011;20:7–13.

    Article  CAS  PubMed  Google Scholar 

  • Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, Lieben L, Mathieu C, Demay M. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev. 2008;29:726–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dusso AS, Brown AJ, Slatopolsky E. Vitamin D. Am J Physiol Renal Physiol. 2005;289:F8–28.

    Article  CAS  PubMed  Google Scholar 

  • Feldman D, Pike JW, Glorieux FH. Vitamin D. 2nd ed. San Diego: Elsevier; 2005.

    Google Scholar 

  • Guillot X, Semerano L, Saidenberg-Kermanac’h N, Falgarone G, Boissier MC. Vitamin D and inflammation. Joint Bone Spine. 2010;77:552–7.

    Article  CAS  PubMed  Google Scholar 

  • Hendrickson WK, Flavin R, Kasperzyk JL, Fiorentino M, Fang F, Lis R, Fiore C, Penney KL, Ma J, Kantoff PW, Stampfer MJ, Loda M, Mucci LA, Giovannucci E. Vitamin D receptor protein expression in tumor tissue and prostate cancer progression. J Clin Oncol. 2011;29:2378–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hochberg Z, Templeton AR. Evolutionary perspective in skin color, vitamin D and its receptor. Hormones. 2010;9:307–11.

    Article  PubMed  Google Scholar 

  • Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr. 2004;80:1678S–8.

    CAS  PubMed  Google Scholar 

  • Jones G, Strugnell SA, DeLuca HF. Current understanding of the molecular actions of vitamin D. Physiol Rev. 1998;78:1193–231.

    CAS  PubMed  Google Scholar 

  • Lacey DL, Axelrod J, Chappel JC, Kahn AJ, Teitelbaum SL. Vitamin D affects proliferation of a murine T helper cell clone. J Immunol. 1987;138:1680–6.

    CAS  PubMed  Google Scholar 

  • Lopez N, Sousa B, Martins D, Gomes M, Vieira D, Veronese LA, Milanezi F, Paredes J, Costa JL, Schmitt F. Alterations in vitamin D signaling and metabolic pathways in breast cancer progression: a study of VDR, CYP27B1 and CYP24A1 expression in benign and malignant breast lesions vitamin D pathways unbalanced in breast lesions. BMC Cancer. 2010;10:483–95.

    Article  Google Scholar 

  • Luong KVQ, Nguyen LTH. The beneficial role of vitamin D and its analogs in cancer treatment and prevention. Crit Rev Oncol/Hematol. 2010;73:192–201.

    Article  Google Scholar 

  • Malloy PJ, Feldman D. Genetic disorders and defects in vitamin D action. Endocrinol Metab Clin N Am. 2010;39:333–46.

    Article  CAS  Google Scholar 

  • Nagpal S, Na S, Rathnachalam R. Noncalcemic actions of vitamin D receptor ligands. Endocr Rev. 2005;26:662–87.

    Article  CAS  PubMed  Google Scholar 

  • Plum LA, DeLuca HF. Vitamin D, disease and therapeutic opportunities. Nat Rev Drug Discov. 2010;9(12):941–55. doi:10.1038/nrd3318.

    Google Scholar 

  • van Etten E, Mathieu C. Immunoregulation by 1,25-dihydroxyvitamin D2:basic concepts. J Steroid Biochem Mol Biol. 2005;97:93–101.

    Article  PubMed  Google Scholar 

  • von Essen MR, Kongsbak M, Schjerling P, Olgaard K, Odum N, Geisler C. Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nat Immunol. 2010;11:344–9.

    Article  Google Scholar 

  • Yee YK, Chintalacharuvu SR, Lu J, Nagpal S. Vitamin D receptor modulators for inflammation and cancer. Mini Rev Med Chem. 2005;5:761–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Rode von Essen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this entry

Cite this entry

von Essen, M.R., Geisler, C. (2016). VDR, the Vitamin D Receptor. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6438-9_287-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6438-9_287-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6438-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics