Skip to main content

SLC34

  • Living reference work entry
  • First Online:
Encyclopedia of Signaling Molecules
  • 43 Accesses

Synonyms

Inorganic phosphate transporter type II (a, b or c); NaPi-IIa; NaPi-IIb; NaPi-IIc; NPT2a; NPT2b; NPT2c; Sodium/phosphate cotransporter type 2; Solute carrier family 34 (sodium phosphate)

Historical Background

Phosphorus is one of the six essential elements for life. Molecules containing anionic phosphate (PO4 3−) are constituents of genetic material (DNA, RNA) and are an essential building block of phospholipid membranes, bones, and teeth; high-energy phosphate bonds drive cell energetics via ATP/ADP hydrolysis; phosphorylation/dephosphorylation reactions are key events in intracellular signaling, and phosphate acts as an intra- and extracellular pH buffer. In mammals, phosphate is obtained from the diet in the form of inorganic phosphate (Pi) that exists in solution as negatively charged mono- (H2PO4 ) and divalent (HPO4 2−) ions in the physiological pH range. As such Pimust be actively transported “uphill” across the cell membrane from the external medium against its...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andrini O, Ghezzi C, Murer H, Forster IC. The leak mode of type II Na(+)-P(i) cotransporters. Channels (Austin). 2008;2(5):346–57.

    Article  Google Scholar 

  • Andrini O, Meinild AK, Ghezzi C, Murer H, Forster IC. Lithium interactions with Na+-coupled inorganic phosphate cotransporters: insights into the mechanism of sequential cation binding. Am J Phys Cell Phys. 2012;302(3):C539–54.

    Article  CAS  Google Scholar 

  • Bacconi A, Virkki LV, Biber J, Murer H, Forster IC. Renouncing electrogenicity is not free of charge: switching on electrogenicity in a Na+-coupled phosphate cotransporter. Proc Natl Acad Sci U S A. 2005;102:12606–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergwitz C, Juppner H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med. 2010;61:91–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinour D, Davidovits M, Ganon L, Ruminska J, Forster IC, Hernando N, Eyal E, Holtzman EJ, Wagner CA. Loss of function of NaPiIIa causes nephrocalcinosis and possibly kidney insufficiency. Pediatr Nephrol. 2016;31(12):2289–97.

    Article  PubMed  Google Scholar 

  • Fenollar-Ferrer C, Patti M, Knopfel T, Werner A, Forster IC, Forrest LR. Structural fold and binding sites of the human Na(+)-phosphate cotransporter NaPi-II. Biophys J. 2014;106(6):1268–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenollar-Ferrer C, Forster IC, Patti M, Knoepfel T, Werner A, Forrest LR. Identification of the first sodium binding site of the phosphate cotransporter NaPi-IIa (SLC34A1). Biophys J. 2015;108(10):2465–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forster IC, Loo DD, Eskandari S. Stoichiometry and Na+ binding cooperativity of rat and flounder renal type II Na+-Pi cotransporters. Am J Physiol. 1999;276(4 Pt 2):F644–9.

    CAS  PubMed  Google Scholar 

  • Forster IC, Kohler K, Biber J, Murer H. Forging the link between structure and function of electrogenic cotransporters: the renal type IIa Na+/Pi cotransporter as a case study. Prog Biophys Mol Biol. 2002;80(3):69–108.

    Article  CAS  PubMed  Google Scholar 

  • Forster IC, Hernando N, Biber J, Murer H. Proximal tubular handling of phosphate: a molecular perspective. Kidney Int. 2006;70(9):1548–59.

    Article  CAS  PubMed  Google Scholar 

  • Forster IC, Hernando N, Biber J, Murer H. Phosphate transport kinetics and structure-function relationships of SLC34 and SLC20 proteins. Curr Top Membr. 2012;70:313–56.

    Article  CAS  PubMed  Google Scholar 

  • Forster IC, Hernando N, Biber J, Murer H. Phosphate transporters of the SLC20 and SLC34 families. Mol Asp Med. 2013;34(2–3):386–95.

    Article  CAS  Google Scholar 

  • Ghezzi C, Murer H, Forster IC. Substrate interactions of the electroneutral Na+-coupled inorganic phosphate cotransporter (NaPi-IIc). J Physiol. 2009;587(Pt 17):4293–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannini D, Touhami J, Charnet P, Sitbon M, Battini JL. Inorganic phosphate export by the retrovirus receptor XPR1 in metazoans. Cell Rep. 2013;3(6):1866–73.

    Article  CAS  PubMed  Google Scholar 

  • Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, Razzaque MS, Rosenblatt KP, Baum MG, Kuro-o M, Moe OW. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 2010;24(9):3438–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu MC, Kuro-o M, Moe OW. Renal and extrarenal actions of Klotho. Semin Nephrol. 2013;33(2):118–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khadeer MA, Tang Z, Tenenhouse HS, Eiden MV, Murer H, Hernando N, Weinman EJ, Chellaiah MA, Gupta A. Na+-dependent phosphate transporters in the murine osteoclast: cellular distribution and protein interactions. Am J Physiol. 2003;284(6):C1633–44.

    Article  CAS  Google Scholar 

  • Kohl B, Wagner CA, Huelseweh B, Busch AE, Werner A. The Na+-phosphate cotransport system (NaPi-II) with a cleaved protein backbone: implications on function and membrane insertion. J Physiol. 1998;508(Pt 2):341–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohler K, Forster IC, Lambert G, Biber J, Murer H. The functional unit of the renal type IIa Na+/Pi cotransporter is a monomer. J Biol Chem. 2000;275(34):26113–20.

    Article  CAS  PubMed  Google Scholar 

  • Lederer E, Miyamoto K. Clinical consequences of mutations in sodium phosphate cotransporters. Clin J Am Soc Nephrol. 2012;7(7):1179–87.

    Article  CAS  PubMed  Google Scholar 

  • Lin K, Rubinfeld B, Zhang C, Firestein R, Harstad E, Roth L, Tsai SP, Schutten M, Xu K, Hristopoulos M, Polakis P. Preclinical development of an anti-NaPi2b (SLC34A2) antibody-drug conjugate as a therapeutic for non-small cell lung and ovarian cancers. Clin Cancer Res. 2015;21(22):5139–50.

    Article  CAS  PubMed  Google Scholar 

  • Loghman-Adham M. Use of phosphonocarboxylic acids as inhibitors of sodium-phosphate cotransport. Gen Pharmacol. 1996;27(2):305–12.

    Article  CAS  PubMed  Google Scholar 

  • Magagnin S, Werner A, Markovich D, Sorribas V, Stange G, Biber J, Murer H. Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc Natl Acad Sci U S A. 1993;90(13):5979–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marks J, Debnam ES, Unwin RJ. The role of the gastrointestinal tract in phosphate homeostasis in health and chronic kidney disease. Curr Opin Nephrol Hypertens. 2013;22(4):481–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murer H, Hernando N, Forster I, Biber J. Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev. 2000;80(4):1373–409.

    CAS  PubMed  Google Scholar 

  • Nishimura M, Naito S. Tissue-specific mRNA expression profiles of human solute carrier transporter superfamilies. Drug Metab Pharmacokinet. 2008;23(1):22–44.

    Article  CAS  PubMed  Google Scholar 

  • Patti M, Forster IC. Correlating charge movements with local conformational changes of a na(+)-coupled cotransporter. Biophys J. 2014;106(8):1618–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patti M, Fenollar-Ferrer C, Werner A, Forrest LR, Forster IC. Cation interactions and membrane potential induce conformational changes in NaPi-IIb. Biophys J. 2016;111(5):973–88.

    Article  CAS  PubMed  Google Scholar 

  • Ravera S, Virkki LV, Murer H, Forster IC. Deciphering PiT transport kinetics and substrate specificity using electrophysiology and flux measurements. Am J Phys Cell Phys. 2007;293(2):C606–20.

    Article  CAS  Google Scholar 

  • Schlingmann KP, Ruminska J, Kaufmann M, Dursun I, Patti M, Kranz B, Pronicka E, Ciara E, Akcay T, Bulus D, Cornelissen EA, Gawlik A, Sikora P, Patzer L, Galiano M, Boyadzhiev V, Dumic M, Vivante A, Kleta R, Dekel B, Levtchenko E, Bindels RJ, Rust S, Forster IC, Hernando N, Jones G, Wagner CA, Konrad M. Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J Am Soc Nephrol. 2016;27(2):604–14.

    Article  CAS  PubMed  Google Scholar 

  • Uwai Y, Arima R, Takatsu C, Furuta R, Kawasaki T, Nabekura T. Sodium-phosphate cotransporter mediates reabsorption of lithium in rat kidney. Pharmacol Res. 2014;87:94–8.

    Article  CAS  PubMed  Google Scholar 

  • Vergara-Jaque A, Fenollar-Ferrer C, Kaufmann D, Forrest LR. Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms. Front Pharmacol. 2015a;6:1–12.

    Article  Google Scholar 

  • Vergara-Jaque A, Fenollar-Ferrer C, Mulligan C, Mindell JA, Forrest LR. Family resemblances: a common fold for some dimeric ion-coupled secondary transporters. J Gen Physiol. 2015b;146(5):423–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villa-Bellosta R, Sorribas V. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate. Toxicol Appl Pharmacol. 2008;232(1):125–34.

    Article  CAS  PubMed  Google Scholar 

  • Wagner CA, Rubio-Aliaga I, Biber J, Hernando N. Genetic diseases of renal phosphate handling. Nephrol Dial Transplant. 2014;29(Suppl 4):iv45–54.

    Article  CAS  PubMed  Google Scholar 

  • Weinstock J. Inhibitors of sodium-dependent phosphate transport. Expert Opin Ther Pat. 2004;14(1):3.

    Article  Google Scholar 

  • Ye W, Chen C, Gao Y, Zheng ZS, Xu Y, Yun M, Weng HW, Xie D, Ye S, Zhang JX. Overexpression of SLC34A2 is an independent prognostic indicator in bladder cancer and its depletion suppresses tumor growth via decreasing c-Myc expression and transcriptional activity. Cell Death Dis. 2017;8(2):e2581.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Forster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Forster, I., Werner, A. (2017). SLC34. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6438-9_101997-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6438-9_101997-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6438-9

  • Online ISBN: 978-1-4614-6438-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics