Encyclopedia of Signaling Molecules

Living Edition
| Editors: Sangdun Choi

Transient Receptor Potential Cation Channel Subfamily V Member 4 (TRPV4)

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6438-9_101977-1

Synonyms

Historical Background

The transient receptor potential cation channel vanilloid isoform 4 (TRPV4), one of the six members of the TRPV subfamily, is a broadly expressed and versatile vertebrate cellular sensor. It was independently identified using candidate gene strategies as the vanilloid receptor-related osmotically activated channel (VR-OAC) in the central nervous system (CNS) (Liedtke et al. 2000) and the vanilloid receptor-like channel 2 (VRL-2) and osm-9-like TRP channel 4 (OTRPC4) in the kidney, liver, and heart (Strotmann et al. 2000). The gene encodes a nonselective cation channel with a slight preference for calcium (PCa/PNa= 6–10). The channel is a tetramer of four subunits that are polymodally...

Keywords

Chronic Obstructive Pulmonary Disease Spinal Muscular Atrophy Transient Receptor Potential Protein Metatropic Dysplasia Receptor Potential Cation Channel Subfamily 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Akiyama T, Ivanov M, Nagamine M, Davoodi A, Carstens MI, Ikoma A, et al. Involvement of TRPV4 in serotonin-evoked scratching. J Invest Dermatol. 2016;136(1):154–60.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alexander R, Kerby A, Aubdool AA, Power AR, Grover S, Gentry C, et al. 4α-phorbol 12,13-didecanoate activates cultured mouse dorsal root ganglia neurons independently of TRPV4. Br J Pharmacol. 2013;168(3):761–72.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baylie RL, Brayden JE. TRPV channels and vascular function. Acta Physiol (Oxf). 2011;203(1):99–116.CrossRefGoogle Scholar
  4. Becker D, Blase C, Bereiter-Hahn J, Jendrach M. TRPV4 exhibits a functional role in cell-volume regulation. J Cell Sci. 2005;118(Pt 11):2435–40.CrossRefPubMedGoogle Scholar
  5. Darby WG, Grace MS, Baratchi S, McIntyre P. Modulation of TRPV4 by diverse mechanisms. Int J Biochem Cell Biol. 2016;78:217–28.CrossRefPubMedGoogle Scholar
  6. Everaerts W, Nilius B, Owsianik G. The vanilloid transient receptor potential channel TRPV4: from structure to disease. Prog Biophys Mol Biol. 2010;103(1):2–17.CrossRefPubMedGoogle Scholar
  7. Filosa JA, Yao X, Rath G. TRPV4 and the regulation of vascular tone. J Cardiovasc Pharmacol. 2013;61(2):113–9.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Garcia-Elias A, Mrkonjić S, Pardo-Pastor C, Inada H, Hellmich UA, Rubio-Moscardó F, et al. Phosphatidylinositol-4,5-biphosphate-dependent rearrangement of TRPV4 cytosolic tails enables channel activation by physiological stimuli. Proc Natl Acad Sci U S A. 2013;110(23):9553–8.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Guéguinou M, Chantôme A, Fromont G, Bougnoux P, Vandier C, Potier-Cartereau M. KCa and Ca(2+) channels: the complex thought. Biochim Biophys Acta. 2014;1843(10):2322–33.CrossRefPubMedGoogle Scholar
  10. Güler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M. Heat-evoked activation oft he ion channel, TRPV4. J Neurosci. 2002;22(15):6408–14.PubMedGoogle Scholar
  11. Iuso A, Križaj D. TRPV4-AQP4 interactions ‘turbocharge’ astroglial sensitivity to small osmotic gradients. Channels. 2016;10(3):172–4.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Jian MY, King JA, Al-Mehdi AB, Liedtke W, Townsley MI. High vascular pressure-induced lung injury requires P450 epoxygenase-dependent activation of TRPV4. Am J Respir Cell Mol Biol. 2008;38(4):386–92.CrossRefPubMedGoogle Scholar
  13. Jie P, Hong Z, Tian Y, Li Y, Lin L, Zhou L, et al. Activation of transient receptor potential vanilloid induces apoptosis in hippocampus through downregulating PI3K/Akt and upregulating p38 MAPK signaling pathways. Cell Death Dis. 2015;6:e1775. doi:10.1038/cddis.2015.146.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jo A, Ryskamp D, Phuong T, Verkman A, Yarishkin O, MacAulay N, et al. TRPV4 and AQP4 channels synergistically regulate cell volume and calcium homeostasis in retinal Muller Glia. J Neurosci. 2015;35(39):13525–37.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jo AO, Lakk M, Frye AM, Phuong TT, Redmon SN, Roberts R, et al. Differential volume regulation and calcium signaling in two ciliary body cell types is subserved by TRPV4 channels. Proc Natl Acad Sci U S A. 2016;113(14):3885–90.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kaneko Y, Szallasi A. Transient receptor potential (TRP) channels: a clinical perspective. Br J Pharmacol. 2014;171(10):2474–507.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Landouré G, Zdebik A, Martinez T, Burnett B, Stanescu H, Inada H, et al. Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat Genet. 2009;42(2):170–4.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lechner SG, Markworth S, Poole K, Smith ES, Lapatsina L, Frahm S, et al. The molecular and cellular identity of peripheral osmoreceptors. Neuron. 2011;69(2):332–44.CrossRefPubMedGoogle Scholar
  19. Leddy HA, McNulty AL, Lee SH, Rothfusz NE, Gloss B, Kirby ML, et al. Follistatin in chondrocytes: the link between TRPV4 channelopathies and skeletal malformations. FASEB J. 2014;28(6):2525–37.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Liedtke W, Choe Y, Martí-Renom M, Bell A, Denis C. Andrej Šali et al. vanilloid receptor–related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell. 2000;103(3):525–35.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Liedtke W, Friedman J. Abnormal osmotic regulation in trpv4−/− mice. Proc Natl Acad Sci U S A. 2003;100(23):13698–703.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lorenzo IM, Liedtke W, Sanderson MJ, Valverde MA. TRPV4 channel participates in receptor-operated calcium entry and ciliary beat frequency regulation in mouse airway epithelial cells. Proc Natl Acad Sci U S A. 2008;105(34):12611–6.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Loukin S, Zhou X, Su Z, Saimi Y, Kung C. Wild-type and brachyolmia-causing mutant TRPV4 channels respond directly to stretch force. J Biol Chem. 2010;285(35):27176–81.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ma X, Cheng K, Wong C, O’Neil R, Birnbaumer L, Ambudkar I, et al. Heteromeric TRPV4-C1 channels contribute to store-operated Ca2+ entry in vascular endothelial cells. Cell Calcium. 2011;50(6):502–9.CrossRefPubMedGoogle Scholar
  25. Matthews BD, Thodeti CK, Tytell JD, Mammoto A, Overby DR, Ingber DE. Ultra-rapid activation of TRPV4 ion channels by mechanical forces applied to cell surface beta1 integrins. Integr Biol (Camb). 2010;2(9):435–42.CrossRefGoogle Scholar
  26. McNulty A, Leddy H, Liedtke W, Guilak F. TRPV4 as a therapeutic target for joint diseases. Naunyn Schmiedebergs Arch Pharmacol. 2015;388(4):437–50.CrossRefPubMedGoogle Scholar
  27. Mendoza S, Fang J, Gutterman D, Wilcox D, Bubolz A, Li R, et al. TRPV4-mediated endothelial Ca2+ influx and vasodilation in response to shear stress. Am J Physiol Heart Circ Physiol. 2010;298(2):H466–76.CrossRefPubMedGoogle Scholar
  28. Mihara H, Suzuki N, Muhammad JS, Nanjo S, Ando T, Fujinami H, et al. Transient receptor potential vanilloid 4 (TRPV4) silencing in Helicobacter pylori-infected human gastric epithelium. Helicobacter. 2016. Available from: http://onlinelibrary.wiley.com/doi/10.1111/hel.12361/full
  29. Mochizuki T, Sokabe T, Araki I, Fujishita K, Shibasaki K, Uchida K, et al. The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. J Biol Chem. 2009;384(32):21257–64.CrossRefGoogle Scholar
  30. Mola MG, Sparaneo A, Gargano CD, Spray DC, Svelto M, Frigeri A, et al. The speed of swelling kinetics modulatets cell volume regulation and calcium signaling in astrocytes: A different point of view on the role of aquaporins. Glia. 2016;64(1):139–54.CrossRefPubMedGoogle Scholar
  31. Moore C, Cevikbas F, Pasolli HA, Chen Y, Kong W, Kempkes C, et al. UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling. Proc Natl Acad Sci U S A. 2013;110(34):E3225–34.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Nilius B, Voets T. The puzzle of TRPV4 channelopathies. EMBO Rep. 2013;14(2):152–63.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Phelps CB, Wang RR, Choo SS, Gaudet R. Differential regulation of TRPV1, TRPV3, and TRPV4 sensitivity through a conserved binding site on the ankyrin repeat domain. J Biol Chem. 2010;285(1):731–40.CrossRefPubMedGoogle Scholar
  34. Rocio Servin-Vences M, Moroni M, Lewin GR, Poole K. Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes. Elife. 2017 6. pii: e21074.Google Scholar
  35. Ryskamp D, Witkovsky P, Barabas P, Huang W, Koehler C, Akimov N, et al. The polymodal ion channel transient receptor potential vanilloid 4 modulates calcium flux, spiking rate, and apoptosis of mouse retinal ganglion cells. J Neurosci. 2011;31(19):7089–101.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ryskamp D, Jo A, Frye A, Vazquez-Chona F, MacAulay N, Thoreson W, et al. Swelling and eicosanoid metabolites differentially gate TRPV4 channels in retinal neurons and glia. J Neurosci. 2014;34(47):15689–700.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ryskamp DA, Frye AM, Phuong TT, Yarishkin O, Jo AO, Xu Y, et al. TRPV4 regulates calcium homeostasis, cytoskeletal remodeling, conventional outflow and intraocular pressure in the mammalian eye. Sci Rep. 2016;6:30583. doi:10.1038/srep30583.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Shahidullah M, Mandal A, Delamere NA. Damage to lens fiber cells causes TRPV4-dependent Src family kinase activation in the epithelium. Exp Eye Res. 2015; 140:85–93.Google Scholar
  39. Shibasaki K, Suzuki M, Mizuno A, Tominaga M. Effects of body temperature on neural activity in the hippocampus: Regulation of resting membrane potentials by transient receptor potential vanilloid 4. J Neurosci. 2007;27(7):1566–75.CrossRefPubMedGoogle Scholar
  40. Shibasaki K, Sugio S, Takao K, Yamanaka A, Miyakawa T, Tominaga M, et al. TRPV4 activation at the physiological temperature is a critical determinant of neuronal excitability and behavior. Pflugers Arch. 2015;467(12):2495–507.CrossRefPubMedGoogle Scholar
  41. Shibasaki K. TRPV4 ion channel as important cell sensors. J Anesth. 2016;30:1014–9.CrossRefPubMedGoogle Scholar
  42. Shigematsu H, Sokabe T, Danev R, Tominaga M, Nagayama K. A 3.5-nm structure of rat TRPV4 cation channel revealed by zernike phase-contrast cryoelectron microscopy. J Biol Chem. 2010;285:11210–8.CrossRefPubMedGoogle Scholar
  43. Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant T. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol. 2000;2:695–702.CrossRefPubMedGoogle Scholar
  44. Sudbury JR, Bourque CW. Dynamic and permissive roles of TRPV1 and TRPV4 channels for thermosensation in mouse supraoptic magnocellular neurosecretory neurons. J Neurosci. 2013;33(43):17160–5.CrossRefPubMedGoogle Scholar
  45. Suzuki M, Hirao A, Mizuno A. Microfilament-associated protein 7 increases the membrane expression of Transient Receptor Potential Vanilloid 4 (TRPV4). J Biol Chem. 2003;278(51):51448–53.CrossRefPubMedGoogle Scholar
  46. Takahashi N, Hamada-Nakahara S, Itoh Y, Takemura K, Shimada A, Ueda Y, et al. TRPV4 channel activity is modulated by direct interaction of the ankyrin domain to PI(4,5)P2. Nat Commun. 2014;5:4994. doi:10.1038/ncomms5994.CrossRefPubMedGoogle Scholar
  47. Takayama Y, Shibasaki K, Suzuki Y, Yamanaka A, Tominaga M. Modulation of water efflux through functional interaction between TRPV4 and TMEM16A/anoctamin 1. FASEB J. 2014;28(5):2238–48.CrossRefPubMedGoogle Scholar
  48. Thorneloe K, Sulpizio A, Lin Z, Figueroa D, Clouse A, McCafferty G, et al. N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: part I. J Pharmacol Exp Ther. 2008;326(2):432–42.CrossRefPubMedGoogle Scholar
  49. Toft-Bertelsen T, Krizaj D and MacaAulay N. When size matters: Transient receptor potential vanilloid 4 channel as a volume-sensor rather than an osmo-sensor. J Physiol 2017; in the press.Google Scholar
  50. Tomilin V, Mamenko M, Zaika O, Pochynyuk O. Role of renal TRP channels in physiology and pathology. Semin Immunopathol. 2016;38(3):371–83.CrossRefPubMedGoogle Scholar
  51. Vincent F, Duncton MA. TRPV4 agonists and anagonists. Curr Top Med Chem. 2011;11(17):2216–26.CrossRefPubMedGoogle Scholar
  52. Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B. Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci U S A. 2004;101(1):396–401.CrossRefPubMedGoogle Scholar
  53. Watanabe H, Vriens J, Suh S, Benham C, Droogmans G, Nilius B. Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem. 2002;277(49):47044–51.CrossRefPubMedGoogle Scholar
  54. Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature. 2003;424(6947):434–8.CrossRefPubMedGoogle Scholar
  55. White JPM, Cibelli M, Urban L, Nilius B, McGeown JG, Nagy I. TRPV4: molecular conductor of a diverse orchestra. J Phys Rev. 2016;96(3):911–73.Google Scholar
  56. Willette RN, Bao W, Nerurkar S, Yue TL, Doe CP, Stankus G, et al. Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: Part 2. J Pharmacol Exp Ther. 2008;326(2):443–52.CrossRefPubMedGoogle Scholar
  57. Yatsu R, Miyagawa S, Kohno S, Saito S, Lowers RH, Ogino Y, et al. TRPV4 associates environmental temperature and sex determination in the American alligator. Sci Rep. 2015;5:18581. doi:10.1038/srep18581.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2016

Authors and Affiliations

  • Sarah N. Redmon
    • 1
  • Koji Shibasaki
    • 2
  • David Križaj
    • 1
  1. 1.Department of Ophthalmology & Visual SciencesJohn A. Moran Eye CenterSalt Lake CityUSA
  2. 2.Department of Molecular and Cellular NeurobiologyGunma University Graduate School of MedicineMaebashiJapan