Skip to main content

ADP-Ribosylation Factor-6 (ARF6)

  • Living reference work entry
  • First Online:
Encyclopedia of Signaling Molecules

Synonyms

Adenosine diphosphate-ribosylation factor-6; ADP-ribosylation factor-6; ARF6; Arf6

Historical Background

The first member of the ADP-ribosylation factor (ARF) family (ARF1) was originally discovered in 1984 as a cofactor for cholera toxin-mediated ADP-ribosylation of the heterotrimeric G-protein Gs (Kahn and Gilman 1984). Since then it has been found to be a Ras-related small GTPase with molecular weight of ~21 kDa (Sewell and Kahn 1988). Use of Saccharomyces cerevisiae as a model system allowed the determination of a role for ARF1 in the secretory pathway, along with its intracellular localization at the Golgi (Stearns et al. 1990). ARFs are ubiquitously expressed in eukaryotic cells and are major regulators of intercellular vesicle trafficking. They have been found to be conserved across many species, including yeast, fish, insects, and animals, indicating an important role for them in cellular functions. Subsequent characterization of the ARF family in mammals has...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akiyama M, Zhou M, Sugimoto R, Hongu T, Furuya M, Funakoshi Y, et al. Tissue- and development-dependent expression of the small GTPase Arf6 in mice. Dev Dyn. 2010;239:3416–35. doi:10.1002/dvdy.22481.

    Article  CAS  PubMed  Google Scholar 

  • Begle A, Tryoen-Toth P, de Barry J, Bader MF, Vitale N. ARF6 regulates the synthesis of fusogenic lipids for calcium-regulated exocytosis in neuroendocrine cells. J Biol Chem. 2009;284:4836–45. doi:10.1074/jbc.M806894200.

    Article  CAS  PubMed  Google Scholar 

  • Caumont AS, Galas MC, Vitale N, Aunis D, Bader MF. Regulated exocytosis in chromaffin cells. Translocation of ARF6 stimulates a plasma membrane-associated phospholipase D. J Biol Chem. 1998;273:1373–9.

    Article  CAS  PubMed  Google Scholar 

  • Cavenagh MM, Whitney JA, Carroll K, Zhang C, Boman AL, Rosenwald AG, et al. Intracellular distribution of Arf proteins in mammalian cells. Arf6 is uniquely localized to the plasma membrane. J Biol Chem. 1996;271:21767–74.

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Brinkmann K, Chen Z, Pak CW, Liao Y, Shi S, et al. The WAVE regulatory complex links diverse receptors to the actin cytoskeleton. Cell. 2014;156:195–207. doi:10.1016/j.cell.2013.11.048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi W, Karim ZA, Whiteheart SW. Arf6 plays an early role in platelet activation by collagen and convulxin. Blood. 2006;107:3145–52. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16352809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claing A, Chen W, Miller WE, Vitale N, Moss J, Premont RT, et al. beta-Arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis. J Biol Chem. 2001;276:42509–13. doi:10.1074/jbc.M108399200.

    Article  CAS  PubMed  Google Scholar 

  • D’Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol. 2006;7:347–58. doi:10.1038/nrm1910.

    Article  PubMed  Google Scholar 

  • D’Souza-Schorey C, Stahl PD. Myristoylation is required for the intracellular localization and endocytic function of ARF6. Exp Cell Res. 1995;221:153–9. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7589240.

    Article  PubMed  Google Scholar 

  • D’Souza-Schorey C, Boshans RL, McDonough M, Stahl PD, Van Aelst L. A role for POR1, a Rac1-interacting protein, in ARF6-mediated cytoskeletal rearrangements. EMBO J. 1997;16:5445–54. doi:10.1093/emboj/16.17.5445.

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Souza-Schorey C, van Donselaar E, Hsu VW, Yang C, Stahl PD, Peters PJ. ARF6 targets recycling vesicles to the plasma membrane: insights from an ultrastructural investigation. J Cell Biol. 1998;140:603–16. doi:10.1083/jcb.140.3.603.

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies JC, Bain SC, Kanamarlapudi V. ADP-ribosylation factor 6 regulates endothelin-1-induced lipolysis in adipocytes. Biochem Pharmacol. 2014a;90:406–13. doi:10.1016/j.bcp.2014.06.012.

    Article  CAS  PubMed  Google Scholar 

  • Davies JC, Tamaddon-Jahromi S, Jannoo R, Kanamarlapudi V. Cytohesin 2/ARF6 regulates preadipocyte migration through the activation of ERK1/2. Biochem Pharmacol. 2014b;92:651–60. doi:10.1016/j.bcp.2014.09.023.

    Article  CAS  PubMed  Google Scholar 

  • Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature. 2006;443:651–7. doi:10.1038/nature05185.

    Article  CAS  PubMed  Google Scholar 

  • Eva R, Crisp S, Marland JR, Norman JC, Kanamarlapudi V, ffrench-Constant C, et al. ARF6 directs axon transport and traffic of integrins and regulates axon growth in adult DRG neurons. J Neurosci. 2012;32:10352–64. doi:10.1523/jneurosci.1409-12.2012.

    Article  CAS  PubMed  Google Scholar 

  • Fielding AB, Schonteich E, Matheson J, Wilson G, Yu X, Hickson GRX, et al. Rab11-FIP3 and FIP4 interact with Arf6 and the Exocyst to control membrane traffic in cytokinesis. EMBO J. 2005;24:3389–99. doi:10.1038/sj.emboj.7600803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galas MC, Helms JB, Vitale N, Thierse D, Aunis D, Bader MF. Regulated exocytosis in chromaffin cells. A potential role for a secretory granule-associated ARF6 protein. J Biol Chem. 1997;272:2788–93.

    Article  CAS  PubMed  Google Scholar 

  • Gaschet J, Hsu VW. Distribution of ARF6 between membrane and cytosol is regulated by its GTPase cycle. J Biol Chem. 1999;274:20040–5. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10391955.

    Article  CAS  PubMed  Google Scholar 

  • George AA, Hayden S, Stanton GR, Brockerhoff SE. Arf6 and the 5’phosphatase of Synaptojanin 1 regulate autophagy in cone photoreceptors. Inside Cell. 2016;1:117–33. doi:10.1002/icl3.1044.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. doi:10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto A, Oikawa T, Hashimoto S, Sugino H, Yoshikawa A, Otsuka Y, et al. P53- and mevalonate pathway-driven malignancies require Arf6 for metastasis and drug resistance. J Cell Biol. 2016a;213:81–95. doi:10.1083/jcb.201510002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto S, Mikami S, Sugino H, Yoshikawa A, Hashimoto A, Onodera Y, et al. Lysophosphatidic acid activates Arf6 to promote the mesenchymal malignancy of renal cancer. Nat Commun. 2016b;7:10656. doi:10.1038/ncomms10656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haun RS, Tsai SC, Adamik R, Moss J, Vaughan M. Effect of myristoylation on GTP-dependent binding of ADP-ribosylation factor to Golgi. J Biol Chem. 1993;268:7064–8. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8463239.

    CAS  PubMed  Google Scholar 

  • Hongu T, Yamauchi Y, Funakoshi Y, Katagiri N, Ohbayashi N, Kanaho Y. Pathological functions of the small GTPase Arf6 in cancer progression: tumor angiogenesis and metastasis. Small GTPases. 2016;7:47–53. doi:10.1080/21541248.2016.1154640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosaka M, Toda K, Takatsu H, Torii S, Murakami K, Nakayama K. Structure and intracellular localization of mouse ADP-ribosylation factors type 1 to type 6 (ARF1-ARF6). J Biochem (Tokyo). 1996;120:813–9. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8947846.

    Article  CAS  Google Scholar 

  • Houndolo T, Boulay PL, Claing A. G protein-coupled receptor endocytosis in ADP-ribosylation factor 6-depleted cells. J Biol Chem. 2005;280:5598–604. doi:10.1074/jbc.M411456200.

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Joshi S, Xiang B, Kanaho Y, Li Z, Bouchard BA, et al. Arf6 controls platelet spreading and clot retraction via integrin alphaIIbbeta3 trafficking. Blood. 2016;127:1459–67. doi:10.1182/blood-2015-05-648550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphreys D, Davidson AC, Hume PJ, Makin LE, Koronakis V. Arf6 coordinates actin assembly through the WAVE complex, a mechanism usurped by Salmonella to invade host cells. Proc Natl Acad Sci USA. 2013;110:16880–5. doi:10.1073/pnas.1311680110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphreys D, Singh V, Koronakis V. Inhibition of WAVE regulatory complex activation by a bacterial virulence effector counteracts pathogen phagocytosis. Cell Rep. 2016;17:697–707. doi:10.1016/j.celrep.2016.09.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang DJ, Jun YW, Shim J, Sim SE, Lee JA, Lim CS, et al. Activation of Aplysia ARF6 induces neurite outgrowth and is sequestered by the overexpression of the PH domain of Aplysia Sec7 proteins. Neurobiol Learn Mem. 2016;S1074-7427(16):30092–2. doi:10.1016/j.nlm.2016.06.017.

    Google Scholar 

  • Kahn RA, Gilman AG. Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. J Biol Chem. 1984;259:6228–34.

    CAS  PubMed  Google Scholar 

  • Kahn RA, Goddard C, Newkirk M. Chemical and immunological characterization of the 21-kDa ADP-ribosylation factor of adenylate cyclase. J Biol Chem. 1988;263:8282–7.

    CAS  PubMed  Google Scholar 

  • Kanamarlapudi V, Owens SE, Saha K, Pope RJ, Mundell SJ. ARF6-dependent regulation of P2Y receptor traffic and function in human platelets. PLoS One. 2012a;7:e43532. doi:10.1371/journal.pone.0043532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanamarlapudi V, Thompson A, Kelly E, Lopez Bernal A. ARF6 activated by the LHCG receptor through the cytohesin family of guanine nucleotide exchange factors mediates the receptor internalization and signaling. J Biol Chem. 2012b;287:20443–55. doi:10.1074/jbc.M112.362087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS. Assignment of the human ADP-ribosylation factor 6 (ARF6) gene to chromosome 7q22.1 by radiation hybrid mapping. Cytogenet Cell Genet. 1999;84:94. doi:10.1159/000015225.

    Article  CAS  PubMed  Google Scholar 

  • Koo TH, Eipper BA, Donaldson JG. Arf6 recruits the Rac GEF Kalirin to the plasma membrane facilitating Rac activation. BMC Cell Biol. 2007;8:29. doi:10.1186/1471-2121-8-29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krauss M, Kinuta M, Wenk MR, De Camilli P, Takei K, Haucke V. ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Iγ. J Cell Biol. 2003;162:113–24. doi:10.1083/jcb.200301006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krcmery J, Camarata T, Kulisz A, Simon HG. Nucleocytoplasmic functions of the PDZ-LIM protein family: new insights into organ development. BioEssays. 2010;32:100–8. doi:10.1002/bies.200900148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee FJ, Moss J, Vaughan M. Human and Giardia ADP-ribosylation factors (ARFs) complement ARF function in Saccharomyces cerevisiae. J Biol Chem. 1992;267:24441–5.

    CAS  PubMed  Google Scholar 

  • Macia E, Luton F, Partisani M, Cherfils J, Chardin P, Franco M. The GDP-bound form of Arf6 is located at the plasma membrane. J Cell Sci. 2004;117:2389–98. doi:10.1242/jcs.01090.

    Article  CAS  PubMed  Google Scholar 

  • Marquer C, Tian H, Yi J, Bastien J, Dall’Armi C, Yang-Klingler Y, et al. Arf6 controls retromer traffic and intracellular cholesterol distribution via a phosphoinositide-based mechanism. Nat Commun. 2016;7:11919. doi:10.1038/ncomms11919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menetrey J, Macia E, Pasqualato S, Franco M, Cherfils J. Structure of Arf6-GDP suggests a basis for guanine nucleotide exchange factors specificity. Nat Struct Mol Biol. 2000;7:466–9.

    Article  CAS  Google Scholar 

  • Montagnac G, Sibarita JB, Loubery S, Daviet L, Romao M, Raposo G, et al. ARF6 Interacts with JIP4 to control a motor switch mechanism regulating endosome traffic in cytokinesis. Curr Biol. 2009;19:184–95. doi:10.1016/j.cub.2008.12.043.

    Article  CAS  PubMed  Google Scholar 

  • Mossessova E, Gulbis JM, Goldberg J. Structure of the guanine nucleotide exchange factor Sec7 domain of human arno and analysis of the interaction with ARF GTPase. Cell. 1998;92:415–23.

    Article  CAS  PubMed  Google Scholar 

  • Mukhamedova N, Hoang A, Cui HL, Carmichael I, Fu Y, Bukrinsky M, et al. Small GTPase ARF6 regulates endocytic pathway leading to degradation of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol. 2016;36:2292–303. doi:10.1161/atvbaha.116.308418.

    Article  CAS  PubMed  Google Scholar 

  • Murtagh Jr JJ, Mowatt MR, Lee CM, Lee FJ, Mishima K, Nash TE, et al. Guanine nucleotide-binding proteins in the intestinal parasite Giardia lamblia. Isolation of a gene encoding an approximately 20-kDa ADP-ribosylation factor. J Biol Chem. 1992;267:9654–62.

    CAS  PubMed  Google Scholar 

  • Naslavsky N, Weigert R, Donaldson JG. Characterization of a nonclathrin endocytic pathway: membrane cargo and lipid requirements. Mol Biol Cell. 2004;15:3542–52. doi:10.1091/mbc.E04-02-0151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palacios F, Schweitzer JK, Boshans RL, D’Souza-Schorey C. ARF6-GTP recruits Nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly. Nat Cell Biol. 2002;4:929–36. doi:10.1038/ncb881.

    Article  CAS  PubMed  Google Scholar 

  • Paleotti O, Macia E, Luton F, Klein S, Partisani M, Chardin P, et al. The small G-protein Arf6GTP recruits the AP-2 adaptor complex to membranes. J Biol Chem. 2005;280:21661–6. doi:10.1074/jbc.M503099200.

    Article  CAS  PubMed  Google Scholar 

  • Pasqualato S, Menetrey J, Franco M, Cherfils J. The structural GDP/GTP cycle of human Arf6. EMBO Rep. 2001;2:234–8. doi:10.1093/embo-reports/kve043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelletan LE, Suhaiman L, Vaquer CC, Bustos MA, De Blas GA, Vitale N, et al. ADP ribosylation factor 6 (ARF6) promotes acrosomal exocytosis by modulating lipid turnover and Rab3A activation. J Biol Chem. 2015;290:9823–41. doi:10.1074/jbc.M114.629006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters PJ, Hsu VW, Ooi CE, Finazzi D, Teal SB, Oorschot V, et al. Overexpression of wild-type and mutant ARF1 and ARF6: distinct perturbations of nonoverlapping membrane compartments. J Cell Biol. 1995;128:1003–17. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7896867.

    Article  CAS  PubMed  Google Scholar 

  • Powelka AM, Sun J, Li J, Gao M, Shaw LM, Sonnenberg A, et al. Stimulation-dependent recycling of integrin beta1 regulated by ARF6 and Rab11. Traffic (Copenhagen, Denmark). 2004;5:20–36.

    Article  CAS  Google Scholar 

  • Radhakrishna H, Al-Awar O, Khachikian Z, Donaldson JG. ARF6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. J Cell Sci. 1999;112(Pt 6):855–66.

    CAS  PubMed  Google Scholar 

  • Randazzo PA, Yang YC, Rulka C, Kahn RA. Activation of ADP-ribosylation factor by Golgi membranes. Evidence for a brefeldin A- and protease-sensitive activating factor on Golgi membranes. J Biol Chem. 1993;268:9555–63. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8486645.

    CAS  PubMed  Google Scholar 

  • Roth MG. Molecular mechanisms of PLD function in membrane traffic. Traffic (Copenhagen, Denmark). 2008;9:1233–9. doi:10.1111/j.1600–0854.2008.00742.x.

    Article  CAS  Google Scholar 

  • Sakagami H, Hara Y, Fukaya M. Interaction of serologically defined colon cancer antigen-3 with Arf6 and its predominant expression in the mouse testis. Biochem Biophys Res Commun. 2016;477:868–73. doi:10.1016/j.bbrc.2016.06.150.

    Article  CAS  PubMed  Google Scholar 

  • Santy LC, Casanova JE. Activation of ARF6 by ARNO stimulates epithelial cell migration through downstream activation of both Rac1 and phospholipase D. J Cell Biol. 2001;154:599–610. doi:10.1083/jcb.200104019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santy LC, Ravichandran KS, Casanova JE. The DOCK180/Elmo complex couples ARNO-mediated Arf6 activation to the downstream activation of Rac1. Curr Biol. 2005;15:1749–54. doi:10.1016/j.cub.2005.08.052.

    Article  CAS  PubMed  Google Scholar 

  • Scholz R, Berberich S, Rathgeber L, Kolleker A, Kohr G, Kornau HC. AMPA receptor signaling through BRAG2 and Arf6 critical for long-term synaptic depression. Neuron. 2010;66:768–80. doi:10.1016/j.neuron.2010.05.003.

    Article  CAS  PubMed  Google Scholar 

  • Schweitzer JK, D’Souza-Schorey C. Localization and activation of the ARF6 GTPase during cleavage furrow ingression and cytokinesis. J Biol Chem. 2002;277:27210–6. doi:10.1074/jbc.M201569200.

    Article  CAS  PubMed  Google Scholar 

  • Sewell JL, Kahn RA. Sequences of the bovine and yeast ADP-ribosylation factor and comparison to other GTP-binding proteins. Proc Natl Acad Sci USA. 1988;85:4620–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stearns T, Willingham MC, Botstein D, Kahn RA. ADP-ribosylation factor is functionally and physically associated with the Golgi complex. Proc Natl Acad Sci USA. 1990;87:1238–42. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2105501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tagliatti E, Fadda M, Falace A, Benfenati F, Fassio A. Arf6 regulates the cycling and the readily releasable pool of synaptic vesicles at hippocampal synapse. eLife. 2016;5:e10116. doi:10.7554/eLife.10116.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsuchiya M, Price SR, Tsai SC, Moss J, Vaughan M. Molecular identification of ADP-ribosylation factor mRNAs and their expression in mammalian cells. J Biol Chem. 1991;266:2772–7. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1993656.

    CAS  PubMed  Google Scholar 

  • Ueda T, Hanai A, Takei T, Kubo K, Ohgi M, Sakagami H, et al. EFA6 activates Arf6 and participates in its targeting to the Flemming body during cytokinesis. FEBS Lett. 2013;587:1617–23. doi:10.1016/j.febslet.2013.03.042.

    Article  CAS  PubMed  Google Scholar 

  • Urban AE, Quick EO, Miller KP, Krcmery J, Simon H-G. Pdlim7 regulates Arf6-dependent actin dynamics and is required for platelet-mediated thrombosis in mice. PLoS One. 2016;11:e0164042. doi:10.1371/journal.pone.0164042.

    Article  PubMed  PubMed Central  Google Scholar 

  • Venkateswarlu K, Cullen PJ. Signalling via ADP-ribosylation factor 6 lies downstream of phosphatidylinositide 3-kinase. Biochem J. 2000;345(Pt 3):719–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi Y, Miura Y, Kanaho Y. Machineries regulating the activity of the small GTPase Arf6 in cancer cells are potential targets for developing innovative anti-cancer drugs. Adv Biol Regulation. 2016;S2212-4926(16):30060–4. doi:10.1016/j.jbior.2016.10.004.

    Google Scholar 

  • Yoo JH, Shi DS, Grossmann AH, Sorensen LK, Tong Z, Mleynek TM, et al. ARF6 is an actionable node that orchestrates oncogenic GNAQ signaling in uveal melanoma. Cancer Cell. 2016;29:889–904. doi:10.1016/j.ccell.2016.04.015.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkateswarlu Kanamarlapudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Crown Copyright

About this entry

Cite this entry

Tamaddon-Jahromi, S., Kanamarlapudi, V. (2016). ADP-Ribosylation Factor-6 (ARF6). In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6438-9_101965-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6438-9_101965-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6438-9

  • Online ISBN: 978-1-4614-6438-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics