Skip to main content

Transcription Factor PU.1

  • Living reference work entry
  • First Online:
  • 62 Accesses

Synonyms

PU.1; SPI1; Spi1; Spi-1; Sfpi1

Historical Background

PU.1 is a DNA-binding nuclear protein (transcription factor) that is a member of the E26 transformation-specific (ETS) family. PU.1 was named because it can interact with a “PU box,” a stretch of purines in the SV40 viral enhancer, that was identified as being functionally active in lymphoid cells (Petterson and Schaffner 1987). SPI1 was independently identified as the protein product of a gene dysregulated in murine erythroleukemia, as a consequence of proviral integration of the spleen focus-forming virus (SFFV) (Moreau-Gachelin et al. 1988). This gene/protein was named SPI1 for “spleen focus-forming virus proviral integration site 1.” PU.1 and SPI1 were subsequently recognized to be the same protein (Goebl 1990; Paul et al. 1991). PU.1 is encoded by Spi1 on mouse chromosome 2 and by SPI1 on human chromosome 11 (Nguyen et al. 1990). The presence of functional PU boxes led to the identification of PU.1 as a transcription...

This is a preview of subscription content, log in via an institution.

References

  • Anderson MK, Hernandez-Hoyos G, Diamond RA, Rothenberg EV. Precise developmental regulation of Ets family transcription factors during specification and commitment to the T cell lineage. Development. 1999;126(14):3131–48.

    CAS  PubMed  Google Scholar 

  • Anderson KL, Perkin H, Surh CD, Venturini S, Maki RA, Torbett BE. Transcription factor PU.1 is necessary for development of thymic and myeloid progenitor-derived dendritic cells. J Immunol. 2000;164(4):1855–61.

    Article  CAS  PubMed  Google Scholar 

  • Awe O, Hufford MM, Wu H, Pham D, Chang HC, Jabeen R, et al. PU.1 expression in T follicular helper cells limits CD40L-dependent germinal center B cell development. J Immunol. 2015;195(8):3705–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Back J, Allman D, Chan S, Kastner P. Visualizing PU.1 activity during hematopoiesis. Exp Hematol. 2005;33(4):395–402.

    Article  CAS  PubMed  Google Scholar 

  • Brass AL, Zhu AQ, Singh H. Assembly requirements of PU.1-Pip (IRF-4) activator complexes: inhibiting function in vivo using fused dimers. EMBO J. 1999;18(4):977–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang HC, Sehra S, Goswami R, Yao W, Yu Q, Stritesky GL, et al. The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol. 2010;11(6):527–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chopin M, Seillet C, Chevrier S, Wu L, Wang H, Morse 3rd HC, et al. Langerhans cells are generated by two distinct PU.1-dependent transcriptional networks. J Exp Med. 2013;210(13):2967–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook WD, McCaw BJ, Herring C, John DL, Foote SJ, Nutt SL, et al. PU.1 is a suppressor of myeloid leukemia, inactivated in mice by gene deletion and mutation of its DNA binding domain. Blood. 2004;104(12):3437–44.

    Article  CAS  PubMed  Google Scholar 

  • Eisenbeis CF, Singh H, Storb U. Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator. Genes Dev. 1995;9(11):1377–87.

    Article  CAS  PubMed  Google Scholar 

  • Escalante CR, Brass AL, Pongubala JM, Shatova E, Shen L, Singh H, et al. Crystal structure of PU.1/IRF-4/DNA ternary complex. Mol Cell. 2002;10(5):1097–105.

    Article  CAS  PubMed  Google Scholar 

  • Ghisletti S, Natoli G. Deciphering cis-regulatory control in inflammatory cells. Philos Trans R Soc Lond Ser B Biol Sci. 2013;368(1620):20120370.

    Article  Google Scholar 

  • Ghisletti S, Barozzi I, Mietton F, Polletti S, De Santa F, Venturini E, et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity. 2010;32(3):317–28.

    Article  CAS  PubMed  Google Scholar 

  • Gjoneska E, Pfenning AR, Mathys H, Quon G, Kundaje A, Tsai L-H, et al. Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease. Nature. 2015;518(7539):365–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goebl MK. The PU.1 transcription factor is the product of the putative oncogene Spi-1. Cell. 1990;61(7):1165–6.

    Article  CAS  PubMed  Google Scholar 

  • Hagemeier C, Bannister AJ, Cook A, Kouzarides T. The activation domain of transcription factor PU.1 binds the retinoblastoma (RB) protein and the transcription factor TFIID in vitro: RB shows sequence similarity to TFIID and TFIIB. Proc Natl Acad Sci U S A. 1993;90(4):1580–4.

    Google Scholar 

  • Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38(4):576–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickstein DD, Baker DM, Gollahon KA. Back AL. Identification of the promoter of the myelomonocytic leukocyte integrin CD11b. Proc Natl Acad Sci U S A. 1992;89(6):2105–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, et al. Super-enhancers in the control of cell identity and disease. Cell. 2013;155(4):934–47.

    Article  CAS  PubMed  Google Scholar 

  • Hollenhorst PC, McIntosh LP, Graves BJ. Genomic and biochemical insights into the specificity of ETS transcription factors. Annu Rev Biochemist. 2011;80(1):437–71.

    Article  CAS  Google Scholar 

  • Hoppe PS, Schwarzfischer M, Loeffler D, Kokkaliaris KD, Hilsenbeck O, Moritz N, et al. Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. Nature. 2016;535(7611):299–302.

    Article  CAS  PubMed  Google Scholar 

  • Houston IB, Kamath MB, Schweitzer BL, Chlon TM, DeKoter RP. Reduction in PU.1 activity results in a block to B-cell development, abnormal myeloid proliferation, and neonatal lethality. Exp Hematol. 2007;35(7):1056–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hromas R, Orazi A, Neiman RS, Maki R, Van Beveran C, Moore J, et al. Hematopoietic lineage- and stage-restricted expression of the ETS oncogene family member PU.1. Blood. 1993;82(10):2998–3004.

    CAS  PubMed  Google Scholar 

  • Iwasaki H, Somoza C, Shigematsu H, Duprez EA, Iwasaki-Arai J, Mizuno S, et al. Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood. 2005;106(5):1590–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klemsz MJ, Maki RA. Activation of transcription by PU.1 requires both acidic and glutamine domains. Mol Cell Biol. 1996;16(1):390–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klemsz MJ, McKercher SR, Celada A, Van Beveren C, Maki RA. The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell. 1990;61(1):113–24.

    Article  CAS  PubMed  Google Scholar 

  • Kodandapani R, Pio F, Ni CZ, Piccialli G, Klemsz M, McKercher S, et al. A new pattern for helix-turn-helix recognition revealed by the PU.1 ETS-domain-DNA complex. Nature. 1996;380(6573):456–60.

    Article  CAS  PubMed  Google Scholar 

  • Kueh HY, Champhekar A, Nutt SL, Elowitz MB, Rothenberg EV. Positive feedback between PU.1 and the cell cycle controls myeloid differentiation. Science (80- ). 2013;341(6146):670–3.

    Article  CAS  Google Scholar 

  • Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA, David E, et al. Immunogenetics. Chromatin state dynamics during blood formation. Science (80- ). 2014;345(6199):943–9.

    Article  CAS  Google Scholar 

  • Lavallee VP, Baccelli I, Krosl J, Wilhelm B, Barabe F, Gendron P, et al. The transcriptomic landscape and directed chemical interrogation of MLL-rearranged acute myeloid leukemias. Nat Genet. 2015;47(9):1030–7.

    Article  CAS  PubMed  Google Scholar 

  • Leddin M, Perrod C, Hoogenkamp M, Ghani S, Assi S, Heinz S, et al. Two distinct auto-regulatory loops operate at the PU.1 locus in B cells and myeloid cells. Blood. 2011;117(10):2827–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu D, Nakagawa R, Lazzaro S, Staudacher P, Abreu-Goodger C, Henley T, et al. The miR-155-PU.1 axis acts on Pax5 to enable efficient terminal B cell differentiation. J Exp Med. 2014;211(11):2183–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H, et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J. 1996;15(20):5647–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moreau-Gachelin F, Tavitian A, Tambourin P. Spi-1 is a putative oncogene in virally induced murine erythroleukaemias. Nature. 1988;331(6153):277–80.

    Article  CAS  PubMed  Google Scholar 

  • Moreau-Gachelin F, Wendling F, Molina T, Denis N, Titeux M, Grimber G, et al. Spi-1/PU.1 transgenic mice develop multistep erythroleukemias. Mol Cell Biol. 1996;16(5):2453–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mossadegh-Keller N, Sarrazin S, Kandalla PK, Espinosa L, Stanley ER, Nutt SL, et al. M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature. 2013;497(7448):239–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller BU, Pabst T, Osato M, Asou N, Johansen LM, Minden MD, et al. Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood. United States2003;101:2074.

    Google Scholar 

  • Nelsen B, Tian G, Erman B, Gregoire J, Maki R, Graves B, et al. Regulation of lymphoid-specific immunoglobulin mu heavy chain gene enhancer by ETS-domain proteins. Science (80-). 1993;261(5117):82–6.

    Google Scholar 

  • Nerlov C, Querfurth E, Kulessa H, Graf T. GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood. 2000;95(8):2543–51.

    CAS  PubMed  Google Scholar 

  • Nguyen VC, Ray D, Gross MS, de Tand MF, Frezal J, Moreau-Gachelin F. Localization of the human oncogene SPI1 on chromosome 11, region p11.22. Hum Genet. 1990;84(6):542–6.

    Article  CAS  PubMed  Google Scholar 

  • Nutt SL, Metcalf D, D’Amico A, Polli M, Wu L. Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J Exp Med. 2005;201(2):221–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang SH, Minnich M, Gangatirkar P, Zheng Z, Ebert A, Song G, et al. PU.1 cooperates with IRF4 and IRF8 to suppress pre-B-cell leukemia. Leukemia. 2016;30(6):1375–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul R, Schuetze S, Kozak SL, Kozak CA, Kabat D. The Sfpi-1 proviral integration site of Friend erythroleukemia encodes the ets-related transcription factor Pu.1. J Virol. 1991;65(1):464–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petterson M, Schaffner W. A purine-rich DNA sequence motif present in SV40 and lymphotropic papovavirus binds a lymphoid-specific factor and contributes to enhancer activity in lymphoid cells. Genes Dev. 1987;1(9):962–72.

    Article  CAS  PubMed  Google Scholar 

  • Polli M, Dakic A, Light A, Wu L, Tarlinton DM, Nutt SL. The development of functional B lymphocytes in conditional PU.1 knock-out mice. Blood. 2005;106(6):2083–90.

    Article  CAS  PubMed  Google Scholar 

  • Pongubala JM, Atchison ML. Functional characterization of the developmentally controlled immunoglobulin kappa 3′ enhancer: regulation by Id, a repressor of helix-loop-helix transcription factors. Mol Cell Biol. 1991;11(2):1040–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pongubala JM, Nagulapalli S, Klemsz MJ, McKercher SR, Maki RA, Atchison ML. PU.1 recruits a second nuclear factor to a site important for immunoglobulin kappa 3′ enhancer activity. Mol Cell Biol. 1992;12(1):368–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray D, Bosselut R, Ghysdael J, Mattei MG, Tavitian A, Moreau-Gachelin F. Characterization of Spi-B, a transcription factor related to the putative oncoprotein Spi-1/PU.1. Mol Cell Biol. 1992;12(10):4297–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rekhtman N, Radparvar F, Evans T, Skoultchi AI. Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev. 1999;13(11):1398–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenbauer F, Wagner K, Kutok JL, Iwasaki H, Le Beau MM, Okuno Y, et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet. 2004;36(6):624–30.

    Article  CAS  PubMed  Google Scholar 

  • Rosenbauer F, Owens BM, Yu L, Tumang JR, Steidl U, Kutok JL, et al. Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1. Nat Genet. 2006;38(1):27–37.

    Article  CAS  PubMed  Google Scholar 

  • DeKoter RP, Singh H. Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science (80- ). 2000;288(5470):1439–41.

    Article  CAS  Google Scholar 

  • Schwickert TA, Tagoh H, Gultekin S, Dakic A, Axelsson E, Minnich M, et al. Stage-specific control of early B cell development by the transcription factor Ikaros. Nat Immunol. 2014;15(3):283–93.

    Article  CAS  PubMed  Google Scholar 

  • Scott EW, Simon MC, Anastasi J, Singh H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science (80-). 1994;265(5178):1573–7.

    Google Scholar 

  • Sive JI, Basilico S, Hannah R, Kinston SJ, Calero-Nieto FJ, Gottgens B. Genome-scale definition of the transcriptional programme associated with compromised PU.1 activity in acute myeloid leukaemia. Leukemia. 2016;30(1):14–23.

    Article  CAS  PubMed  Google Scholar 

  • Sokalski KM, Li SK, Welch I, Cadieux-Pitre HA, Gruca MR, DeKoter RP. Deletion of genes encoding PU.1 and Spi-B in B cells impairs differentiation and induces pre-B cell acute lymphoblastic leukemia. Blood. 2011;118(10):2801–8.

    Article  CAS  PubMed  Google Scholar 

  • Solomon LA, Li SK, Piskorz J, LS X, DeKoter RP. Genome-wide comparison of PU.1 and Spi-B binding sites in a mouse B lymphoma cell line. BMC Genomics. 2015;16.

    Google Scholar 

  • Staber PB, Zhang P, Ye M, Welner RS, Nombela-Arrieta C, Bach C, et al. Sustained PU.1 levels balance cell-cycle regulators to prevent exhaustion of adult hematopoietic stem cells. Mol Cell. 2013;49(5):934–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stopka T, Amanatullah DF, Papetti M, Skoultchi AI. PU.1 inhibits the erythroid program by binding to GATA-1 on DNA and creating a repressive chromatin structure. EMBO J. 2005;24(21):3712–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turkistany SA, DeKoter RP. The transcription factor PU.1 is a critical regulator of cellular communication in the immune system. Arch Immunol Ther Exp. 2011;59(6):431–40.

    Article  CAS  Google Scholar 

  • Vangala RK, Heiss-Neumann MS, Rangatia JS, Singh SM, Schoch C, Tenen DG, et al. The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood. 2003;101(1):270–7.

    Article  CAS  PubMed  Google Scholar 

  • Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z, Kohlhaas S, et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity. 2007;27(6):847–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Tong Q. Transcription factor PU.1 is expressed in white adipose and inhibits adipocyte differentiation. AJP. Cell Physiol. 2008;295(1):C213–20.

    Article  CAS  Google Scholar 

  • Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153(2):307–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Will B, Vogler TO, Narayanagari S, Bartholdy B, Todorova TI, da Silva Ferreira M, et al. Minimal PU.1 reduction induces a preleukemic state and promotes development of acute myeloid leukemia. Nat Med. 2015;21(10):1172–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wontakal SN, Guo X, Will B, Shi M, Raha D, Mahajan MC, et al. A large gene network in immature erythroid cells is controlled by the myeloid and B cell transcriptional regulator PU.1. PLoS Genet. 2011;7(6):e1001392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto H, Kihara-Negishi F, Yamada T, Hashimoto Y, Oikawa T. Physical and functional interactions between the transcription factor PU.1 and the coactivator CBP. Oncogene. 1999;18(7):1495–501.

    Google Scholar 

  • Ye M, Ermakova O, Graf T. PU.1 is not strictly required for B cell development and its absence induces a B-2 to B-1 cell switch. J Exp Med. 2005;202(10):1411–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Zhang X, Iwama A, Yu C, Smith KA, Mueller BU, et al. PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood. 2000;96(8):2641–8.

    CAS  PubMed  Google Scholar 

  • Zhang JA, Mortazavi A, Williams BA, Wold BJ, Rothenberg EV. Dynamic transformations of genome-wide epigenetic marking and transcriptional control establish T cell identity. Cell. 2012;149(2):467–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziliotto R, Gruca MR, Podder S, Noel G, Ogle CK, Hess DA, et al. PU.1 promotes cell cycle exit in the murine myeloid lineage associated with downregulation of E2F1. Exp Hematol. 2014;42(3):204–17 .e1

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney P. DeKoter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this entry

Cite this entry

Batista, C.R., DeKoter, R.P. (2016). Transcription Factor PU.1. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6438-9_101960-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6438-9_101960-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6438-9

  • Online ISBN: 978-1-4614-6438-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics