Encyclopedia of Signaling Molecules

Living Edition
| Editors: Sangdun Choi


Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6438-9_101958-1


Historical Background

The need for a specific transporter to mediate cellular glucose transport across the lipophilic cell membrane was first proposed in 1948 based on the observed saturable and isomer-specific nature of glucose uptake in human erythrocytes (LeFevre 1948). Continued work in this area led to the discovery an integral membrane protein with the ability to mediate glucose transport across the erythrocyte (Kasahara and Hinkle 1977). Cloning of this transporter in the HepG2 human hepatoma cell line in 1985 (Mueckler et al. 1985) and rat brain in 1986 (Birnbaum et al. 1986) led to the name “HepG2/rat brain/human erythrocyte transporter.” cDNA cloning of a glucose transporter abundantly expressed in the liver (and to a lesser extent in the kidney and intestine) occurred several years later (Fukumoto et al. 1988), and in the following year the first report of cDNA cloning of the glucose transporter predominantly expressed in rat...


Hydroxyl Lactate Carboxyl Diarrhea Luminal 
This is a preview of subscription content, log in to check access


  1. Birnbaum MJ, Haspel HC, Rosen OM. Cloning and characterization of a cDNA encoding the rat brain glucose-transporter protein. Proc Natl Acad Sci U S A. 1986;83:5784–8.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bobulescu IA, Moe OW. Renal transport of uric acid: evolving concepts and uncertainties. Adv Chronic Kidney Dis. 2012;19:358–71.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, et al. Crystal structure of the human glucose transporter GLUT1. Nature. 2014;510:121–5.CrossRefPubMedGoogle Scholar
  4. Fukumoto H, Seino S, Imura H, Seino Y, Eddy RL, Fukushima Y, et al. Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proc Natl Acad Sci U S A. 1988;85:5434–8.CrossRefPubMedPubMedCentralGoogle Scholar
  5. James DE, Strube M, Mueckler M. Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature. 1989;338:83–7.CrossRefPubMedGoogle Scholar
  6. Joost HG, Bell GI, Best JD, Birnbaum MJ, Charron MJ, Chen YT, et al. Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am J Physiol Endocrinol Metab. 2002;282:E974–6.CrossRefPubMedGoogle Scholar
  7. Kasahara M, Hinkle PC. Reconstitution and purification of the d-glucose transporter from human erythrocytes. J Biol Chem. 1977;252:7384–90.PubMedGoogle Scholar
  8. Klepper J. Glucose transporter deficiency syndrome (GLUT1DS) and the ketogenic diet. Epilepsia. 2008;49 Suppl 8:46–9.Google Scholar
  9. Klepper J, Leiendecker B. GLUT1 deficiency syndrome – 2007 update. Dev Med Child Neurol. 2007;49:707–16.CrossRefPubMedGoogle Scholar
  10. LeFevre PG. Evidence of active transfer of certain non-electrolytes across the human red cell membrane. J Gen Physiol. 1948;31:505–27.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Long W, Cheeseman CI. Structure of, and functional insight into the GLUT family of membrane transporters. Cell Health Cytoskeleton. 2015;7. doi:10.2147/CHC.S60484.Google Scholar
  12. Marger MD, Saier Jr MH. A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci. 1993;18:13–20.CrossRefPubMedGoogle Scholar
  13. Mueckler M, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR, et al. Sequence and structure of a human glucose transporter. Science. 1985;229:941–5.CrossRefPubMedGoogle Scholar
  14. Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93:993–1017.CrossRefPubMedGoogle Scholar
  15. Sakamoto K, Holman GD. Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am J Physiol Endocrinol Metab. 2008;295:E29–37.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Stringer DM, Zahradka P, Taylor CG. Glucose transporters: cellular links to hyperglycemia in insulin resistance and diabetes. Nutr Rev. 2015;73:140–54.CrossRefPubMedGoogle Scholar
  17. Thorens B. GLUT2, glucose sensing and glucose homeostasis. Diabetologia. 2015;58:221–32.CrossRefPubMedGoogle Scholar
  18. Wu X, Freeze HH. GLUT14, a duplicon of GLUT3, is specifically expressed in testis as alternative splice forms. Genomics. 2002;80:553–7.CrossRefPubMedGoogle Scholar
  19. Zaid H, Antonescu CN, Randhawa VK, Klip A. Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem J. 2008;413:201–15.CrossRefPubMedGoogle Scholar
  20. Zhao FQ, Keating AF. Functional properties and genomics of glucose transporters. Curr Genomics. 2007;8:113–28.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Kinesiology and Applied HealthUniversity of WinnipegWinnipegCanada