Skip to main content

GLUT

  • Living reference work entry
  • First Online:
  • 191 Accesses

Synonyms

Facilitative hexose transporter; SLC2A

Historical Background

The need for a specific transporter to mediate cellular glucose transport across the lipophilic cell membrane was first proposed in 1948 based on the observed saturable and isomer-specific nature of glucose uptake in human erythrocytes (LeFevre 1948). Continued work in this area led to the discovery an integral membrane protein with the ability to mediate glucose transport across the erythrocyte (Kasahara and Hinkle 1977). Cloning of this transporter in the HepG2 human hepatoma cell line in 1985 (Mueckler et al. 1985) and rat brain in 1986 (Birnbaum et al. 1986) led to the name “HepG2/rat brain/human erythrocyte transporter.” cDNA cloning of a glucose transporter abundantly expressed in the liver (and to a lesser extent in the kidney and intestine) occurred several years later (Fukumoto et al. 1988), and in the following year the first report of cDNA cloning of the glucose transporter predominantly expressed in rat...

This is a preview of subscription content, log in via an institution.

References

  • Birnbaum MJ, Haspel HC, Rosen OM. Cloning and characterization of a cDNA encoding the rat brain glucose-transporter protein. Proc Natl Acad Sci U S A. 1986;83:5784–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bobulescu IA, Moe OW. Renal transport of uric acid: evolving concepts and uncertainties. Adv Chronic Kidney Dis. 2012;19:358–71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, et al. Crystal structure of the human glucose transporter GLUT1. Nature. 2014;510:121–5.

    Article  CAS  PubMed  Google Scholar 

  • Fukumoto H, Seino S, Imura H, Seino Y, Eddy RL, Fukushima Y, et al. Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proc Natl Acad Sci U S A. 1988;85:5434–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James DE, Strube M, Mueckler M. Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature. 1989;338:83–7.

    Article  CAS  PubMed  Google Scholar 

  • Joost HG, Bell GI, Best JD, Birnbaum MJ, Charron MJ, Chen YT, et al. Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am J Physiol Endocrinol Metab. 2002;282:E974–6.

    Article  CAS  PubMed  Google Scholar 

  • Kasahara M, Hinkle PC. Reconstitution and purification of the d-glucose transporter from human erythrocytes. J Biol Chem. 1977;252:7384–90.

    CAS  PubMed  Google Scholar 

  • Klepper J. Glucose transporter deficiency syndrome (GLUT1DS) and the ketogenic diet. Epilepsia. 2008;49 Suppl 8:46–9.

    Google Scholar 

  • Klepper J, Leiendecker B. GLUT1 deficiency syndrome – 2007 update. Dev Med Child Neurol. 2007;49:707–16.

    Article  PubMed  Google Scholar 

  • LeFevre PG. Evidence of active transfer of certain non-electrolytes across the human red cell membrane. J Gen Physiol. 1948;31:505–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long W, Cheeseman CI. Structure of, and functional insight into the GLUT family of membrane transporters. Cell Health Cytoskeleton. 2015;7. doi:10.2147/CHC.S60484.

    Google Scholar 

  • Marger MD, Saier Jr MH. A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci. 1993;18:13–20.

    Article  CAS  PubMed  Google Scholar 

  • Mueckler M, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR, et al. Sequence and structure of a human glucose transporter. Science. 1985;229:941–5.

    Article  CAS  PubMed  Google Scholar 

  • Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93:993–1017.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto K, Holman GD. Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am J Physiol Endocrinol Metab. 2008;295:E29–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stringer DM, Zahradka P, Taylor CG. Glucose transporters: cellular links to hyperglycemia in insulin resistance and diabetes. Nutr Rev. 2015;73:140–54.

    Article  PubMed  Google Scholar 

  • Thorens B. GLUT2, glucose sensing and glucose homeostasis. Diabetologia. 2015;58:221–32.

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Freeze HH. GLUT14, a duplicon of GLUT3, is specifically expressed in testis as alternative splice forms. Genomics. 2002;80:553–7.

    Article  CAS  PubMed  Google Scholar 

  • Zaid H, Antonescu CN, Randhawa VK, Klip A. Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem J. 2008;413:201–15.

    Article  CAS  PubMed  Google Scholar 

  • Zhao FQ, Keating AF. Functional properties and genomics of glucose transporters. Curr Genomics. 2007;8:113–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle M. Defries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Defries, D.M. (2017). GLUT. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6438-9_101958-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6438-9_101958-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6438-9

  • Online ISBN: 978-1-4614-6438-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics