Encyclopedia of Signaling Molecules

Living Edition
| Editors: Sangdun Choi

Actinin Family

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6438-9_101924-1

Synonyms

Historical Background

Alpha-actinin was first identified in 1964 by Setsuro and Fumiko Ebashi in a biochemical fraction from muscle that promoted actomyosin contraction (Ebashi et al. 1964). However, it was experiments that they performed with Koscak Maruyama that defined what is now regarded as the primary function of alpha-actinin, namely, the cross-linking of actin filaments. This cross-linking ability was observed in vitro as the formation of gels when alpha-actinin was mixed with F-actin, while bundling of actin filaments was observed by electron microscopy. The name alpha-actinin was Maruyama’s suggestion, with another factor that he had identified and characterized being designated beta-actinin. Beta-actinin is unrelated to alpha-actinin and is now almost exclusively called Cap Z, or capping protein, reflecting its function in the Z-disk of the muscle sarcomere where it caps the barbed (+) end of actin filaments. Thus the...

Keywords

Actin Filament Focal Adhesion Fission Yeast Thin Filament Contractile Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Berman Y, North KN. A gene for speed: the emerging role of alpha-actinin-3 in muscle metabolism. Physiology (Bethesda). 2010;25:250–9. doi:10.1152/physiol.00008.2010.CrossRefGoogle Scholar
  2. Blanchard A, Ohanian V, Critchley D. The structure and function of alpha-actinin. J Muscle Res Cell Motil. 1989;10:280–9.CrossRefPubMedGoogle Scholar
  3. Bottega R, Marconi C, Faleschini M, Baj G, Cagioni C, Pecci A, et al. ACTN1-related thrombocytopenia: identification of novel families for phenotypic characterization. Blood. 2015;125:869–72. doi:10.1182/blood-2014-08-594531.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Djinovic-Carugo K, Gautel M, Ylanne J, Young P. The spectrin repeat: a structural platform for cytoskeletal protein assemblies. FEBS Lett. 2002;513:119–23.CrossRefPubMedGoogle Scholar
  5. Ebashi S, Ebashi F, Maruyama K. A new protein factor promoting contraction of actomyosin. Nature. 1964;203:645–6.CrossRefPubMedGoogle Scholar
  6. Feng D, DuMontier C, Pollak MR. The role of alpha-actinin-4 in human kidney disease. Cell Biosci. 2015;5:44. doi:10.1186/s13578-015-0036-8.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Foley KS, Young PW. An analysis of splicing, actin-binding properties, heterodimerization and molecular interactions of the non-muscle alpha-actinins. Biochem J. 2013;452:477–88. doi:10.1042/BJ20121824.CrossRefPubMedGoogle Scholar
  8. Foley KS, Young PW. The non-muscle functions of actinins: an update. Biochem J. 2014;459:1–13. doi:10.1042/BJ20131511.CrossRefPubMedGoogle Scholar
  9. Fukumoto M, Kurisu S, Yamada T, Takenawa T. Alpha-Actinin-4 enhances colorectal cancer cell invasion by suppressing focal adhesion maturation. PLoS One. 2015;10:e0120616. doi:10.1371/journal.pone.0120616.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gautel M. The sarcomeric cytoskeleton: who picks up the strain? Curr Opin Cell Biol. 2011;23:39–46. doi:10.1016/j.ceb.2010.12.001.CrossRefPubMedGoogle Scholar
  11. Gautel M, Djinovic-Carugo K. The sarcomeric cytoskeleton: from molecules to motion. J Exp Biol. 2016;219:135–45. doi:10.1242/jeb.124941.CrossRefPubMedGoogle Scholar
  12. Gueguen P, Rouault K, Chen JM, Raguenes O, Fichou Y, Hardy E, et al. A missense mutation in the alpha-Actinin 1 Gene (ACTN1) is the cause of autosomal dominant macrothrombocytopenia in a large French family. PLoS One. 2013;8:e74728. doi:10.1371/journal.pone.0074728.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Honda K. The biological role of actinin-4 (ACTN4) in malignant phenotypes of cancer. Cell Biosci. 2015;5:41. doi:10.1186/s13578-015-0031-0.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jayadev R, Kuk CY, Low SH, Murata-Hori M. Calcium sensitivity of alpha-actinin is required for equatorial actin assembly during cytokinesis. Cell Cycle. 2012;11:1929–37. doi:10.4161/cc.20277.CrossRefPubMedGoogle Scholar
  15. Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF, et al. Nanoscale architecture of integrin-based cell adhesions. Nature. 2010;468:580–4. doi:10.1038/nature09621.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kos CH, Le TC, Sinha S, Henderson JM, Kim SH, Sugimoto H, et al. Mice deficient in alpha-actinin-4 have severe glomerular disease. J Clin Invest. 2003;111:1683–90. doi:10.1172/JCI17988.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kunishima S, Okuno Y, Yoshida K, Shiraishi Y, Sanada M, Muramatsu H, et al. ACTN1 mutations cause congenital macrothrombocytopenia. Am J Hum Genet. 2013;92:431–8. doi:10.1016/j.ajhg.2013.01.015.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Laporte D, Ojkic N, Vavylonis D, Wu JQ. Alpha-Actinin and fimbrin cooperate with myosin II to organize actomyosin bundles during contractile-ring assembly. Mol Biol Cell. 2012;23:3094–110. doi:10.1091/mbc.E12-02-0123.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lazarides E, Burridge K. Alpha-actinin: immunofluorescent localization of a muscle structural protein in nonmuscle cells. Cell. 1975;6:289–98.CrossRefPubMedGoogle Scholar
  20. MacArthur DG, North KN. A gene for speed? The evolution and function of alpha-actinin-3. Bioessays. 2004;26:786–95. doi:10.1002/bies.20061.CrossRefPubMedGoogle Scholar
  21. MacArthur DG, Seto JT, Raftery JM, Quinlan KG, Huttley GA, Hook JW, et al. Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat Genet. 2007;39:1261–5. doi:10.1038/ng2122.CrossRefPubMedGoogle Scholar
  22. Mukhina S, Wang YL, Murata-Hori M. Alpha-actinin is required for tightly regulated remodeling of the actin cortical network during cytokinesis. Dev Cell. 2007;13:554–65. doi:10.1016/j.devcel.2007.08.003.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Murphy AC, Lindsay AJ, McCaffrey MW, Djinovic-Carugo K, Young PW. Congenital macrothrombocytopenia-linked mutations in the actin-binding domain of alpha-actinin-1 enhance F-actin association. FEBS Lett. 2016;590:685–95. doi:10.1002/1873-3468.12101.CrossRefPubMedGoogle Scholar
  24. Murphy AC, Young PW. The actinin family of actin cross-linking proteins – a genetic perspective. Cell Biosci. 2015;5:49. doi:10.1186/s13578-015-0029-7.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Otey CA, Carpen O. Alpha-actinin revisited: a fresh look at an old player. Cell Motil Cytoskeleton. 2004;58:104–11.CrossRefPubMedGoogle Scholar
  26. Ribeiro Ede Jr A, Pinotsis N, Ghisleni A, Salmazo A, Konarev PV, Kostan J, et al. The structure and regulation of human muscle alpha-actinin. Cell. 2014;159:1447–60. doi:10.1016/j.cell.2014.10.056.CrossRefPubMedGoogle Scholar
  27. Seto JT, Quinlan KG, Lek M, Zheng XF, Garton F, MacArthur DG, et al. ACTN3 genotype influences muscle performance through the regulation of calcineurin signaling. J Clin Invest. 2013;123:4255–63. doi:10.1172/JCI67691.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Shao H, Wu C, Wells A. Phosphorylation of alpha-actinin 4 upon epidermal growth factor exposure regulates its interaction with actin. J Biol Chem. 2010;285:2591–600. doi:10.1074/jbc.M109.035790.CrossRefPubMedGoogle Scholar
  29. Sjoblom B, Salmazo A, Djinovic-Carugo K. Alpha-actinin structure and regulation. Cell Mol Life Sci. 2008;65:2688–701. doi:10.1007/s00018-008-8080-8.CrossRefPubMedGoogle Scholar
  30. Sorimachi H, Freiburg A, Kolmerer B, Ishiura S, Stier G, Gregorio CC, et al. Tissue-specific expression and alpha-actinin binding properties of the Z-disc titin: implications for the nature of vertebrate Z-discs. J Mol Biol. 1997;270:688–95. doi:10.1006/jmbi.1997.1145.CrossRefPubMedGoogle Scholar
  31. von Wichert G, Haimovich B, Feng GS, Sheetz MP. Force-dependent integrin-cytoskeleton linkage formation requires downregulation of focal complex dynamics by Shp2. EMBO J. 2003;22:5023–35. doi:10.1093/emboj/cdg492.CrossRefGoogle Scholar
  32. Wu JQ, Bahler J, Pringle JR. Roles of a fimbrin and an alpha-actinin-like protein in fission yeast cell polarization and cytokinesis. Mol Biol Cell. 2001;12:1061–77.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Yasutomi M, Kunishima S, Okazaki S, Tanizawa A, Tsuchida S, Ohshima Y. ACTN1 rod domain mutation associated with congenital macrothrombocytopenia. Ann Hematol. 2015. doi:10.1007/s00277-015-2517-6.PubMedGoogle Scholar
  34. Young P, Ferguson C, Bañuelos S, Gautel M. Molecular structure of the sarcomeric Z-disk: two types of titin interactions lead to an asymmetrical sorting of alpha-actinin. EMBO J. 1998;17:1614–24.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Young P, Gautel M. The interaction of titin and alpha-actinin is controlled by a phospholipid-regulated intramolecular pseudoligand mechanism. EMBO J. 2000;19:6331–40. doi:10.1093/emboj/19.23.6331.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2016

Authors and Affiliations

  1. 1.School of Biochemistry and Cell BiologyUniversity College CorkCorkIreland