Encyclopedia of Signaling Molecules

Living Edition
| Editors: Sangdun Choi

TAK1

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6438-9_101848-1

Synonyms

Historical Background

Matsumoto and his colleagues discovered the kinase transforming growth factor β-activated kinase 1 (TAK1) as a new member of MAP triple kinase (MAPKKK) in 1995 using yeast complementation screening (Yamaguchi et al. 1995). TAK1 is ubiquitously expressed in all tissues and four splicing variants have been reported in human. Structurally, TAK1 has an N-terminal kinase domain and a C-terminal regulatory domain. MAPKKK is a serine/threonine-specific protein kinase involved in cellular signal transduction, where MAPKKKs phosphorylate downstream dual-specificity protein kinase MAPKKs, which in turn phosphorylates the MAPKs to regulate a variety of biological events such as cell proliferation, migration, survival, and differentiation. TAK1 has been shown to activate MAPKK3/6 and MAPKK4/7, leading to downstream...

Keywords

Obesity Migration Ischemia Osteoporosis Leukemia 
This is a preview of subscription content, log in to check access

References

  1. Ajibade AA, Wang Q, Cui J, et al. TAK1 negatively regulates NF-κB and p38 MAP kinase activation in Gr-1+CD11b+ neutrophils. Immunity. 2012;36:43–54.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Hanafusa H, Ninomiya-Tsuji J, Masuyama N, Nishita M, Fujisawa J, Shibuya H, Matsumoto K, Nishida E. Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression. J Biol Chem. 1999;274:27161–7.CrossRefPubMedGoogle Scholar
  3. Herrero-Martín G, Høyer-Hansen M, García-García C, Fumarola C, Farkas T, López-Rivas A, Jäättelä M. TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J. 2009;28:677–85.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ikeda Y, Morioka S, Matsumoto K, Ninomiya-Tsuji J. TAK1 binding protein 2 is essential for liver protection from stressors. PLoS One. 2014;9:e88037.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Inagaki M, Omori E, Kim JY, Komatsu Y, Scott G, Ray MK, Yamada G, Matsumoto K, Mishina Y, Ninomiya-Tsuji J. TAK1-binding protein 1, TAB1, mediates osmotic stress-induced TAK1 activation but is dispensable for TAK1-mediated cytokine signaling. J Biol Chem. 2008;283:33080–6.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Inokuchi-Shimizu S, Park EJ, Roh YS, et al. TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis. J Clin Invest. 2014;124:3566–78.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ishitani T, Takaesu G, Ninomiya-Tsuji J, Shibuya H, Gaynor RB, Matsumoto K. Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling. EMBO J. 2003;22:6277–88.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Kajino T, Ren H, Iemura SI, Natsume T, Stefansson B, Brautigan DL, Matsumoto K, Ninomiya-Tsuji J. Protein phosphatase 6 down-regulates TAK1 kinase activation in the IL-1 signaling pathway. J Biol Chem. 2006;281:39891–6.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Kajino T, Omori E, Ishii S, Matsumoto K, Ninomiya-Tsuji J. TAK1 MAPK kinase kinase mediates transforming growth factor-beta signaling by targeting SnoN oncoprotein for degradation. J Biol Chem. 2007;282:9475–81.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Kajino-Sakamoto R, Inagaki M, Lippert E, Akira S, Robine S, Matsumoto K, Jobin C, Ninomiya-Tsuji J. Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development of ileitis and colitis. J Immunol. 2008;181:1143–52.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kanayama A, Seth RB, Sun L, Ea CK, Hong M, Shaito A, Chiu YH, Deng L, Chen ZJ. TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell. 2004;15:535–48.CrossRefPubMedGoogle Scholar
  12. Kishimoto K, Matsumoto K, Ninomiya-Tsuji J. TAK1 mitogen-activated protein kinase kinase kinase is activated by autophosphorylation within its activation loop. J Biol Chem. 2000;275:7359–64.CrossRefPubMedGoogle Scholar
  13. Lamothe B, Lai Y, Xie M, Schneider MD, Darnay BG. TAK1 is essential for osteoclast differentiation and is an important modulator of cell death by apoptosis and necroptosis. Mol Cell Biol. 2013;33:582–95.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Mihaly SR, Ninomiya-Tsuji J, Morioka S. TAK1 control of cell death. Cell Death Differ. 2014a;21:1667–76.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Morioka S, Omori E, Kajino T, Kajino-Sakamoto R, Matsumoto K, Ninomiya-Tsuji J. TAK1 kinase determines TRAIL sensitivity by modulating reactive oxygen species and cIAP. Oncogene. 2009;28:2257–65.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Morioka S, Inagaki M, Komatsu Y, Mishina Y, Matsumoto K, Ninomiya-Tsuji J. TAK1 kinase signaling regulates embryonic angiogenesis by modulating endothelial cell survival and migration. Blood. 2012;120:3846–57.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Morioka S, Broglie P, Omori E, Ikeda Y, Takaesu G, Matsumoto K, Ninomiya-Tsuji J. TAK1 kinase switches cell fate from apoptosis to necrosis following TNF stimulation. J Cell Biol. 2014;204:607–23.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Morioka S, Sai K, Omori E, Ikeda Y, Matsumoto K, Ninomiya-Tsuji J. TAK1 regulates hepatic lipid homeostasis through SREBP. Oncogene. 2016;35:3829–38.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ogura Y, Hindi SM, Sato S, Xiong G, Akira S, Kumar A. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair. Nat Commun. 2015;6:10123.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Omori E, Morioka S, Matsumoto K, Ninomiya-Tsuji J. TAK1 regulates reactive oxygen species and cell death in keratinocytes, which is essential for skin integrity. J Biol Chem. 2008;283:26161–8.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Omori E, Inagaki M, Mishina Y, Matsumoto K, Ninomiya-Tsuji J. Epithelial transforming growth factor -activated kinase 1 (TAK1) is activated through two independent mechanisms and regulates reactive oxygen species. Proc Natl Acad Sci USA. 2012;109:3365–70.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Sai K, Morioka S, Takaesu G, Muthusamy N, Ghashghaei HT, Hanafusa H, Matsumoto KN-TJ. TAK1 determines susceptibility to endoplasmic reticulum stress and leptin resistance in the hypothalamus. J Cell Sci. 2016;129:1855–65.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Sakurai H, Miyoshi H, Mizukami J, Sugita T. Phosphorylation-dependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB1. FEBS Lett. 2000;474:141–5.CrossRefPubMedGoogle Scholar
  24. Swarnkar G, Karuppaiah K, Mbalaviele G, Chen TH-P, Abu-Amer Y. Osteopetrosis in TAK1-deficient mice owing to defective NF-κB and NOTCH signaling. Proc Natl Acad Sci USA. 2014;112:154–9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Takaesu G, Kishida S, Hiyama A, Yamaguchi K, Shibuya H, Irie K, Ninomiya-Tsuji J, Matsumoto K. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell. 2000;5:649–58.CrossRefPubMedGoogle Scholar
  26. Wallach D, Kang T-B, Dillon CP, Green DR. Programmed necrosis in inflammation: toward identification of the effector molecules. Science. 2016;352:aaf2154.CrossRefPubMedGoogle Scholar
  27. Wang C. NF-B antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science. 1998;281:1680–3.CrossRefPubMedGoogle Scholar
  28. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature. 2001;412:346–51.CrossRefPubMedGoogle Scholar
  29. Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E, Matsumoto K. Identification of a member of the MAPKKK family as a potential mediator of TGF-b signal transduction. Science. 1995;270:2008–11.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2016

Authors and Affiliations

  1. 1.Department of Microbiology, Immunology, and Cancer BiologyUniversity of VirginiaCharlottesvilleUSA