Skip to main content

p57

  • Living reference work entry
  • First Online:
Encyclopedia of Signaling Molecules

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Avrahami D, Li C, Yu M, Jiao Y, Zhang J, Naji A, Ziaie S, Glaser B, Kaestner KH. Targeting the cell cycle inhibitor p57Kip2 promotes adult human β cell replication. J Clin Invest. 2014;124:670–4. doi:10.1172/JCI69519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billing M, Rörby E, May G, Tipping AJ, Soneji S, Brown J, Salminen M, Karlsson G, Enver T, Karlsson S. A network including TGFβ/Smad4, Gata2, and p57 regulates proliferation of mouse hematopoietic progenitor cells. Exp Hematol. 2016;44:399–409.e5. doi:10.1016/j.exphem.2016.02.001.

    Article  CAS  PubMed  Google Scholar 

  • Busanello A, Battistelli C, Carbone M, Mostocotto C, Maione R. MyoD regulates p57kip2 expression by interacting with a distant cis-element and modifying a higher order chromatin structure. Nucleic Acids Res. 2012;40:8266–75. doi:10.1093/nar/gks619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castelo-Branco G, Wagner J, Rodriguez FJ, Kele J, Sousa K, Rawal N, Pasolli HA, Fuchs E, Kitajewski J, Arenas E. Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc Natl Acad Sci USA. 2003;100:12747–52. doi:10.1073/pnas.1534900100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang T-S, Kim MJ, Ryoo K, Park J, Eom S-J, Shim J, Nakayama KI, Nakayama K, Tomita M, Takahashi K, Lee M-J, Choi E-J. p57KIP2 modulates stress-activated signaling by inhibiting c-Jun NH2-terminal kinase/stress-activated protein Kinase. J Biol Chem. 2003;278:48092–8. doi:10.1074/jbc.M309421200.

    Article  CAS  PubMed  Google Scholar 

  • Dias RP, Maher ER. An imprinted IMAGe: insights into growth regulation through genomic analysis of a rare disease. Genome Med. 2012;4:60. doi:10.1186/gm361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggermann T, Binder G, Brioude F, Maher ER, Lapunzina P, Cubellis MV, Bergadá I, Prawitt D, Begemann M. CDKN1C mutations: two sides of the same coin. Trends Mol Med. 2014;20:614–22. doi:10.1016/j.molmed.2014.09.001.

    Article  CAS  PubMed  Google Scholar 

  • Figliola R, Busanello A, Vaccarello G, Maione R. Regulation of p57(KIP2) during muscle differentiation: role of Egr1, Sp1 and DNA hypomethylation. J Mol Biol. 2008;380:265–77. doi:10.1016/j.jmb.2008.05.004.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto Y, Kohri K, Kaneko Y, Morisaki H, Kato T, Ikeda K, Nakanishi M. Critical role for the 310 helix region of p57(Kip2) in cyclin-dependent kinase 2 inhibition and growth suppression. J Biol Chem. 1998;273:16544–50.

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Cong Q, Chua JFL, Liu H, Xia X, Zhang X, Lin J, Habib SL, Ao J, Zuo Q, Fu C, Li B. p57Kip2 is an unrecognized DNA damage response effector molecule that functions in tumor suppression and chemoresistance. Oncogene. 2015; 34(27):3568–81.

    Google Scholar 

  • Joseph B, Andersson ER, Vlachos P, Södersten E, Liu L, Teixeira AI, Hermanson O. p57Kip2 is a repressor of Mash1 activity and neuronal differentiation in neural stem cells. Cell Death Differ. 2009;16:1256–65. doi:10.1038/cdd.2009.72.

    Article  CAS  PubMed  Google Scholar 

  • Kassem SA, Ariel I, Thornton PS, Scheimberg I, Glaser B. Beta-cell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy. Diabetes. 2000;49:1325–33.

    Article  CAS  PubMed  Google Scholar 

  • Kavanagh E, Vlachos P, Emourgeon V, Rodhe J, Joseph B. p57(KIP2) control of actin cytoskeleton dynamics is responsible for its mitochondrial pro-apoptotic effect. Cell Death Dis. 2012;3:e311. doi:10.1038/cddis.2012.51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MH, Reynisdóttir I, Massagué J. Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev. 1995;9:639–49.

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, Harper JW, Elledge SJ. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 1995;9:650–62.

    Article  CAS  PubMed  Google Scholar 

  • Pateras IS, Apostolopoulou K, Niforou K, Kotsinas A, Gorgoulis VG. p57KIP2: “Kip”ing the Cell under Control. Mol Cancer Res. 2009;7:1902–19. doi:10.1158/1541-7786.MCR-09-0317.

    Article  CAS  PubMed  Google Scholar 

  • Reynaud EG, Leibovitch MP, Tintignac LA, Pelpel K, Guillier M, Leibovitch SA. Stabilization of MyoD by direct binding to p57(Kip2). J Biol Chem. 2000;275:18767–76. doi:10.1074/jbc.M907412199.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez BAT, Weng Y-I, Liu T-M, Zuo T, Hsu P-Y, Lin C-H, Cheng A-L, Cui H, Yan PS, Huang TH-M. Estrogen-mediated epigenetic repression of the imprinted gene cyclin-dependent kinase inhibitor 1C in breast cancer cells. Carcinogenesis. 2011;32:812–21. doi:10.1093/carcin/bgr017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi MN, Antonangeli F. Cellular response upon stress: p57 contribution to the final outcome. Mediators Inflamm. 2015;1–9. doi:10.1155/2015/259325.

    Google Scholar 

  • Salomon A, Keramidas M, Maisin C, Thomas M. Loss of β-catenin in adrenocortical cancer cells causes growth inhibition and reversal of epithelial-to-mesenchymal transition. Oncotarget. 2015;6:11421–33. doi:10.18632/oncotarget.3222.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scandura JM, Boccuni P, Massagué J, Nimer SD. Transforming growth factor beta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. Proc Natl Acad Sci. USA. 2004;101:15231–6. doi:10.1073/pnas.0406771101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin J-Y, Fitzpatrick GV, Higgins MJ. Two distinct mechanisms of silencing by the KvDMR1 imprinting control region. EMBO J. 2008;27:168–78. doi:10.1038/sj.emboj.7601960.

    Article  CAS  PubMed  Google Scholar 

  • Susaki E, Nakayama K, Yamasaki L, Nakayama KI. Common and specific roles of the related CDK inhibitors p27 and p57 revealed by a knock-in mouse model. Proc Natl Acad Sci USA. 2009;106:5192–7. doi:10.1073/pnas.0811712106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Travers ME, Mackay DJG, Dekker Nitert M, Morris AP, Lindgren CM, Berry A, Johnson PR, Hanley N, Groop LC, McCarthy MI, Gloyn AL. Insights into the molecular mechanism for type 2 diabetes susceptibility at the KCNQ1 locus from temporal changes in imprinting status in human islets. Diabetes. 2013;62:987–92. doi:10.2337/db12-0819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe H, Pan ZQ, Schreiber-Agus N, DePinho RA, Hurwitz J, Xiong Y. Suppression of cell transformation by the cyclin-dependent kinase inhibitor p57KIP2 requires binding to proliferating cell nuclear antigen. Proc Natl Acad Sci USA. 1998;95:1392–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worster DT, Schmelzle T, Solimini NL, Lightcap ES, Millard B, Mills GB, Brugge JS, Albeck JG. Akt and ERK control the proliferative response of mammary epithelial cells to the growth factors IGF-1 and EGF through the cell cycle inhibitor p57Kip2. Sci Signal. 2012;5:ra19. doi:10.1126/scisignal.2001986.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Frisen J, Lee MH, Massague J, Barbacid M. Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev. 1997 Apr 15;11(8):973–83. PubMed PMID: 9136926.

    Google Scholar 

  • Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, Furuta H, Hirota Y, Mori H, Jonsson A, Sato Y, Yamagata K, Hinokio Y, Wang H-Y, Tanahashi T, Nakamura N, Oka Y, Iwasaki N, Iwamoto Y, Yamada Y, Seino Y, Maegawa H, Kashiwagi A, Takeda J, Maeda E, Shin HD, Cho YM, Park KS, Lee HK, Ng MCY, Ma RCW, So W-Y, Chan JCN, Lyssenko V, Tuomi T, Nilsson P, Groop L, Kamatani N, Sekine A, Nakamura Y, Yamamoto K, Yoshida T, Tokunaga K, Itakura M, Makino H, Nanjo K, Kadowaki T, Kasuga M. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40:1092–7. doi:10.1038/ng.207.

    Article  CAS  PubMed  Google Scholar 

  • Yokoo T, Toyoshima H, Miura M, Wang Y, Iida KT, Suzuki H, Sone H, Shimano H, Gotoda T, Nishimori S, Tanaka K, Yamada N. p57Kip2 regulates actin dynamics by binding and translocating LIM-kinase 1 to the nucleus. J Biol Chem. 2003;278:52919–23. doi:10.1074/jbc.M309334200.

    Article  CAS  PubMed  Google Scholar 

  • Zalc A, Hayashi S, Auradé F, Bröhl D, Chang T, Mademtzoglou D, Mourikis P, Yao Z, Cao Y, Birchmeier C, Relaix F. Antagonistic regulation of p57kip2 by Hes/Hey downstream of Notch signaling and muscle regulatory factors regulates skeletal muscle growth arrest. Dev Camb Engl. 2014;141:2780–90. doi:10.1242/dev.110155.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Nicoletta Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this entry

Cite this entry

Rossi, M.N. (2016). p57. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6438-9_101730-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6438-9_101730-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6438-9

  • Online ISBN: 978-1-4614-6438-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics