Encyclopedia of Signaling Molecules

Living Edition
| Editors: Sangdun Choi

Osteoprotegerin

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6438-9_101718-1

Synonyms

Historical Background

It has been estimated that around 10% of total bone mass is renewed per year leading to a full replacement of the bone tissue every 10 years. This biological mechanism called “bone remodeling” plays a central role in calcium and phosphorus homeostasis and is the result of a balance between osteoclast and osteoblast activities. Indeed, osteoclasts originating from hematopoietic stem cells resorb bone (Rousselle and Heymann 2002); and in contrast, osteoblasts, which come from mesenchymal stem cells, are specialized in the formation of new mineralized extracellular matrix (Dechaseaux et al. 2009). For many years, a central regulation based on hormone network including parathyroid hormone (PTH) or calcitonin has been considered as the key...

Keywords

Migration Arthritis Phosphorus Osteoporosis Warfarin 
This is a preview of subscription content, log in to check access

References

  1. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390:175–9. doi:10.1038/36593.CrossRefPubMedGoogle Scholar
  2. Baud’huin M, Duplomb L, Teletchea S, Lamoureux F, Ruiz-Velasco C, Maillasson M, et al. Osteoprotegerin: multiple partners for multiple functions. Cytokine Growth Factor Rev. 2013;24:401–9. doi:10.1016/j.cytogfr.2013.06.001.CrossRefPubMedGoogle Scholar
  3. Baud’huin M, Lamoureux F, Duplomb L, Rédini F, Heymann D. RANKL, RANK, osteoprotegerin: key partners of osteoimmunology and vascular diseases. Cell Mol Life Sci. 2007;64:2334–50. doi:10.1007/s00018-007-7104-0.CrossRefPubMedGoogle Scholar
  4. Bekker PJ, Holloway DL, Rasmussen AS, Murphy R, Martin SW, Leese PT, et al. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Miner Res. 2004;19:1059–66. doi:10.1359/JBMR.040305.CrossRefPubMedGoogle Scholar
  5. Benslimane-Ahmim Z, Heymann D, Dizier B, Lokajczyk A, Brion R, Laurendeau I, et al. Osteoprotegerin: a new actor in vasculogenesis, stimulates endothelial colony-forming cells properties. J Thromb Haemost. 2011;9:834–43. doi:10.1111/j.1538-7836.2011.04207.x.CrossRefPubMedGoogle Scholar
  6. Bernardi S, Bossi F, Toffoli B, Fabris B. Roles and clinical applications of opg and trail as biomarkers in cardiovascular disease. Biomed Res Int. 2016;2016:1752854. doi:10.1155/2016/1752854.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Caparelli C, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 1998;12:1260–8.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chino T, Draves KE, Clark EA. Regulation of dendritic cell survival and cytokine production by osteoprotegerin. J Leukoc Biol. 2009;86:933–40. doi:10.1189/jlb.0708419.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Davaine JM, Quillard T, Brion R, Lapérine O, Guyomarch B, Merlini T, et al. Osteoprotegerin, pericytes and bone-like vascular calcification are associated with carotid plaque stability. PLoS One. 2014;9:e107642. doi:10.1371/journal.pone.0107642.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Davaine JM, Quillard T, Chatelais M, Guilbaud F, Brion R, Guyomarch B, et al. Bone like arterial calcification in femoral atherosclerotic lesions: prevalence and role of osteoprotegerin and pericytes. Eur J Vasc Endovasc Surg. 2016;51:259–67. doi:10.1016/j.ejvs.2015.10.004.CrossRefPubMedGoogle Scholar
  11. Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C, et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem. 1998;273:14363–7.CrossRefPubMedGoogle Scholar
  12. Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature. 2006;440:692–6. doi:10.1038/nature04524.CrossRefPubMedGoogle Scholar
  13. Kondegowda NG, Fenutria R, Pollack IR, Orthofer M, Garcia-Ocaña A, Penninger JM, et al. Osteoprotegerin and denosumab stimulate human beta cell proliferation through inhibition of the receptor activator of NF-κB ligand pathway. Cell Metab. 2015;22:77–85. doi:10.1016/j.cmet.2015.05.021.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165–76.CrossRefPubMedGoogle Scholar
  15. Lamoureux F, Moriceau G, Picarda G, Rousseau J, Trichet V, Rédini F. Regulation of osteoprotegerin pro- or anti-tumoral activity by bone tumor microenvironment. Biochim Biophys Acta. 2010;1805:17–24. doi:10.1016/j.bbcan.2009.08.004.PubMedGoogle Scholar
  16. Mosheimer BA, Kaneider NC, Feistritzer C, Djanani AM, Sturn DH, Patsch JR, Wiedermann CJ. Syndecan-1 is involved in osteoprotegerin-induced chemotaxis in human peripheral blood monocytes. J Clin Endocrinol Metab. 2005;90:2964–71.CrossRefPubMedGoogle Scholar
  17. Pritzker LB, Scatena M, Giachelli CM. The role of osteoprotegerin and tumor necrosis factor-related apoptosis-inducing ligand in human microvascular endothelial cell survival. Mol Biol Cell. 2004;15:2834–41. doi:10.1091/mbc.E04-01-0059.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Rousselle AV, Heymann D. Osteoclastic acidification pathways during bone resorption. Bone. 2002;30:533–40.CrossRefPubMedGoogle Scholar
  19. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89:309–19.CrossRefPubMedGoogle Scholar
  20. Theoleyre S, Wittrant Y, Tat SK, Fortun Y, Redini F, Heymann D. The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev. 2004;15:457–75.CrossRefPubMedGoogle Scholar
  21. Théoleyre S, Kwan Tat S, Vusio P, Blanchard F, Gallagher J, Ricard-Blum S, et al. Characterization of osteoprotegerin binding to glycosaminoglycans by surface plasmon resonance: role in the interactions with receptor activator of nuclear factor kappaB ligand (RANKL) and RANK. Biochem Biophys Res Commun. 2006;347:460–7. doi:10.1016/j.bbrc.2006.06.120.CrossRefPubMedGoogle Scholar
  22. Tsuda E, Goto M, Michizuki S, Yano K, Kobayashi F, Morinaga T, et al. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun. 1997;234:137–42.CrossRefPubMedGoogle Scholar
  23. Yamaguchi K, Kinosaki M, Goto M, Kobayashi F, Tsuda E, Morinaga T, et al. Characterization of structural domains of human osteoclastogenesis inhibitory factor. J Biol Chem. 1998;273:5117–23.CrossRefPubMedGoogle Scholar
  24. Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology. 1998a;139:1329–37. doi:10.1210/endo.139.3.5837.PubMedGoogle Scholar
  25. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA. 1998b;95:3597–602.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Yoldi G, Pellegrini P, Trinidad EM, Cordero A, Gomez-Miragaya J, Serra-Musach J, et al. RANK signaling blockade reduces breast cancer recurrence by inducing tumor cell differentiation. Cancer Res. 2016;76(19):5857–69. doi:10.1158/0008-5472.CAN-15-2745.CrossRefPubMedGoogle Scholar
  27. Yun TJ, Tallquist MD, Aicher A, Rafferty KL, Marshall AJ, Moon JJ, et al. Osteoprotegerin: a crucial regulator of bone metabolism, also regulates B cell development and function. J Immunol. 2001;166:1482–91.CrossRefPubMedGoogle Scholar
  28. Zofkova I, Nemcikova P, Kuklik M. Polymorphisms associated with low bone mass and high risk of atraumatic fracture. Physiol Res. 2015;64:621–31.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2016

Authors and Affiliations

  1. 1.INSERM, UMR957, Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses PrimitivesUniversity of NantesNantesFrance
  2. 2.Department of Oncology and MetabolismInserm, European Associated Laboratory “Sarcoma Research Unit”, The Medical School, University of SheffieldSheffieldUK