Skip to main content

MAP/Microtubule Affinity-Regulating Kinase

  • Living reference work entry
  • First Online:
Encyclopedia of Signaling Molecules
  • 74 Accesses

Synonyms

MARK1: EMK3, hPAR-1c, KIAA1477; MARK2: EMK1, hPAR-1b; MARK3: EMK3, hPAR-1a, C-TAK1, KP78; MARK4: MARKL1, hPAR-1d, KIAA1860

Historical Background

Microtubule-associated protein (MAP)/microtubule affinity-regulating kinase [MARK] was first identified for its role in phosphorylating tau, a MAP implicated in Alzheimer’s disease [AD] (Drewes et al. 1995). Following this discovery, four MARK isoforms were identified in humans and rodents, all of which phosphorylate tau, MAP2, and MAP4 (Drewes et al. 1995; Illenberger et al. 1996; Drewes 2004). Phosphorylation of MAPs causes them to dissociate from microtubules [MTs] leading to MT destabilization (Drewes et al. 1997; Drewes et al. 1998). Tau has been the subject of intensive studies because its phosphorylation is elevated in the AD brain. Since MARK phosphorylates tau, it is a candidate of prime interest as a possible therapeutic target in treating AD and other brain disorders (Drewes 2004; Naz et al. 2013). MARK has also been found...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Al-Hakim AK, Zagorska A, Chapman L, Deak M, Peggie M, Alessi DR. Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains. Biochem J. 2008;411:249–60. doi:10.1042/BJ20080067.

    Article  CAS  PubMed  Google Scholar 

  • Bessone S, Vidal F, Le Bouc Y, Epelbaum J, Bluet-Pajot MT, Darmon M. EMK protein kinase-null mice: dwarfism and hypofertility associated with alterations in the somatotrope and prolactin pathways. Dev Biol. 1999;214:87–101. doi:10.1006/dbio.1999.9379.

    Article  CAS  PubMed  Google Scholar 

  • Black MM. Axonal transport: the orderly motion of axonal structures. Methods Cell Biol. 2016;131:1–19.

    Article  PubMed  Google Scholar 

  • Cheng CY. Toxicants target cell junctions in the testis – insights from the indazole-carboxylic acid model. Spermatogenesis. 2014;4:e981485. doi:10.4161/21565562.2014.9814895.

    Article  PubMed  Google Scholar 

  • Cheng CY, Mruk DD, Silvestrini B, Bonanomi M, Wong CH, Siu MKY, et al. AF-2364 [1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide] is a potential male contraceptive: A review of recent data. Contraception. 2005;72:251–61.

    Article  CAS  PubMed  Google Scholar 

  • Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol. 1997;13:83–117. doi:10.1146/annurev.cellbio.13.1.83.

    Article  CAS  PubMed  Google Scholar 

  • Drewes G. MARKing tau for tangles and toxicity. Trends Biochem Sci. 2004;29:548–55.

    Article  CAS  PubMed  Google Scholar 

  • Drewes G, Ebneth A, Mandelkow EM. MAPs, MARKs and microtubule dynamics. Trends Biochem Sci. 1998;23:307–11.

    Article  CAS  PubMed  Google Scholar 

  • Drewes G, Ebneth A, Preuss U, Mandelkow EM, Mandelkow E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell. 1997;89:297–308.

    Article  CAS  PubMed  Google Scholar 

  • Drewes G, Trinczek B, Illenberger S, Biernat J, Schmitt-Ulms G, Meyer HE, et al. Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. J Biol Chem. 1995;270:7679–88.

    Article  CAS  PubMed  Google Scholar 

  • Elbert M, Rossi G, Brennwald P. The yeast par-1 homologs kin1 and kin2 show genetic and physical interactions with components of the exocytic machinery. Mol Biol Cell. 2005;16:532–49. doi:10.1091/mbc.E04-07-0549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabbri M, Rosa MM, Abreu D, Ferreira JJ. Clinical pharmacology review of salinamide for the treatment of Parkinson’s disease. Neurodegener Dis Manag. 2015;5:481–96.

    Article  PubMed  Google Scholar 

  • Folstein SE, Rosen-Sheidley B. Genetics of autism: complex aetiology for a heterogeneous disorder. Nat Rev Genet. 2001;2:943–55. doi:10.1038/35103559.

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Xiao X, Lui WY, Lee WM, Mruk D, Cheng CY. Cell polarity proteins and spermatogenesis. Semin Cell Dev Biol. 2016;59:62–70. doi:10.1016/j.semcdb.2016.06.008.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein B, Macara IG. The PAR proteins: fundamental players in animal cell polarization. Dev Cell. 2007;13:609–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubaux R, Thu KL, Vucic EA, Pikor LA, Kung SH, Martinez VD, et al. Microtubule affinity-regulating kinase 2 is associated with DNA damage response and cisplatin resistance in non-small cell lung cancer. Int J Cancer. 2015;137:2072–82. doi:10.1002/ijc.29577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurov J, Piwnica-Worms H. The Par-1/MARK family of protein kinases: from polarity to metabolism. Cell Cycle. 2007;6:1966–9. doi:10.4161/cc.6.16.4576.

    Article  CAS  PubMed  Google Scholar 

  • Hurov JB, Stappenbeck TS, Zmasek CM, White LS, Ranganath SH, Russell JH, et al. Immune system dysfunction and autoimmune disease in mice lacking Emk (Par-1) protein kinase. Mol Cell Biol. 2001;21:3206–19. doi:10.1128/MCB.21.9.3206-3219.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurov JB, Watkins JL, Piwnica-Worms H. Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Curr Biol. 2004;14:736–41. doi:10.1016/j.cub.2004.04.007.

    Article  CAS  PubMed  Google Scholar 

  • Hutsler JJ, Zhang H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 2010;1309:83–94. doi:10.1016/j.brainres.2009.09.120.

    Article  CAS  PubMed  Google Scholar 

  • Illenberger S, Drewes G, Trinczek B, Biernat J, Meyer HE, Olmsted JB, et al. Phosphorylation of microtubule-associated proteins MAP2 and MAP4 by the protein kinase p110mark. Phosphorylation sites and regulation of microtubule dynamics. J Biol Chem. 1996;271:10834–43.

    Article  CAS  PubMed  Google Scholar 

  • Johne C, Matenia D, Li XY, Timm T, Balusamy K, Mandelkow EM. Spred1 and TESK1--two new interaction partners of the kinase MARKK/TAO1 that link the microtubule and actin cytoskeleton. Mol Biol Cell. 2008;19:1391–403. doi:10.1091/mbc.E07-07-0730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato T, Satoh S, Okabe H, Kitahara O, Ono K, Kihara C, et al. Isolation of a novel human gene, MARKL1, homologous to MARK3 and its involvement in hepatocellular carcinogenesis. Neoplasia. 2001;3:4–9. doi:10.1038/sj/neo/7900132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemphues K. PARsing embryonic polarity. Cell. 2000;101:345–8.

    Article  CAS  PubMed  Google Scholar 

  • Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009;122:3589–94. doi:10.1242/jcs.051011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lennerz JK, Hurov JB, White LS, Lewandowski KT, Prior JL, Planer GJ, et al. Loss of Par-1a/MARK3/C-TAK1 kinase leads to reduced adiposity, resistance to hepatic steatosis, and defective gluconeogenesis. Mol Cell Biol. 2010;30:5043–56. doi:10.1128/MCB.01472-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Gan L, Chen Y, Luo D, Zhang Z, Cao W, et al. Mark4 promotes oxidative stress and inflammation via binding to PPARgamma and activating NF-kappaB pathway in mice adipocytes. Sci Rep. 2016;6:21382. doi:10.1038/srep21382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lizcano JM, Goransson O, Toth R, Deak M, Morrice NA, Boudeau J, et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 2004;23:833–43. doi:10.1038/sj.emboj.7600110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnani I, Novielli C, Fontana L, Tabano S, Rovina D, Moroni RF, et al. Differential signature of the centrosomal MARK4 isoforms in glioma. Anal Cell Pathol. 2011;34:319–38. doi:10.3233/ACP-2011-0031.

    Article  CAS  Google Scholar 

  • Mamidi A, Inui M, Manfrin A, Soligo S, Enzo E, Aragona M, et al. Signaling crosstalk between TGF beta and Dishevelled/Par1b. Cell Death Differ. 2012;19:1689–97. doi:10.1038/cdd.2012.50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marx A, Nugoor C, Panneerselvam S, Mandelkow E. Structure and function of polarity-inducing kinase family MARK/Par-1 within the branch of AMPK/Snf1-related kinases. FASEB J. 2010;24:1637–48. doi:10.1096/fj.09-148064.

    Article  CAS  PubMed  Google Scholar 

  • Matenia D, Griesshaber B, Li XY, Thiessen A, Johne C, Jiao J, et al. PAK5 kinase is an inhibitor of MARK/Par-1, which leads to stable microtubules and dynamic actin. Mol Biol Cell. 2005;16:4410–22. doi:10.1091/mbc.E05-01-0081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matenia D, Hempp C, Timm T, Eikhof A, Mandelkow EM. Microtubule affinity-regulating kinase 2 (MARK2) turns on phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) at Thr-313, a mutation site in Parkinson disease: effects on mitochondrial transport. J Biol Chem. 2012;287:8174–86. doi:10.1074/jbc.M111.262287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matenia D, Mandelkow EM. Emerging modes of PINK1 signaling: another task for MARK2. Front Mol Neurosci. 2014;7:37. doi:10.3389/fnmol.2014.00037.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maussion G, Carayol J, Lepagnol-Bestel AM, Tores F, Loe-Mie Y, Milbreta U, et al. Convergent evidence identifying MAP/microtubule affinity-regulating kinase 1 (MARK1) as a susceptibility gene for autism. Hum Mol Genet. 2008;17:2541–51. doi:10.1093/hmg/ddn154.

    Article  CAS  PubMed  Google Scholar 

  • McDonald JA. Canonical and noncanonical roles of Par-1/MARK kinases in cell migration. Int Rev Cell Mol Biol. 2014;312:169–99. doi:10.1016/B978-0-12-800178-3.00006-3.

    Article  CAS  PubMed  Google Scholar 

  • Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature. 1984;312:237–42.

    Article  CAS  PubMed  Google Scholar 

  • Mohseni M, Sun J, Lau A, Curtis S, Goldsmith J, Fox VL, et al. A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway. Nat Cell Biol. 2014;16:108–17. doi:10.1038/ncb2884.

    Article  CAS  PubMed  Google Scholar 

  • Moravcevic K, Mendrola JM, Schmitz KR, Wang YH, Slochower D, Janmey PA, et al. Kinase associated-1 domains drive MARK/PAR1 kinases to membrane targets by binding acidic phospholipids. Cell. 2010;143:966–77. doi:10.1016/j.cell.2010.11.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev. 2004;25:747–806.

    Article  CAS  PubMed  Google Scholar 

  • Muller J, Ritt DA, Copeland TD, Morrison DK. Functional analysis of C-TAK1 substrate binding and identification of PKP2 as a new C-TAK1 substrate. EMBO J. 2003;22:4431–42. doi:10.1093/emboj/cdg426.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy JM, Korzhnev DM, Ceccarelli DF, Briant DJ, Zarrine-Afsar A, Sicheri F, et al. Conformational instability of the MARK3 UBA domain compromises ubiquitin recognition and promotes interaction with the adjacent kinase domain. Proc Natl Acad Sci U S A. 2007;104:14336–41. doi:10.1073/pnas.0703012104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naz F, Anjum F, Islam A, Ahmad F, Hassan MI. Microtubule affinity-regulating kinase 4: structure, function, and regulation. Cell Biochem Biophys. 2013;67:485–99. doi:10.1007/s12013-013-9550-7.

    Article  CAS  PubMed  Google Scholar 

  • Ossipova O, Dhawan S, Sokol S, Green JB. Distinct PAR-1 proteins function in different branches of Wnt signaling during vertebrate development. Dev Cell. 2005;8:829–41. doi:10.1016/j.devcel.2005.04.011.

    Article  CAS  PubMed  Google Scholar 

  • Peng CY, Graves PR, Ogg S, Thoma RS, Byrnes 3rd MJ, Wu Z, et al. C-TAK1 protein kinase phosphorylates human Cdc25C on serine 216 and promotes 14-3-3 protein binding. Cell Growth Differ. 1998;9:197–208.

    CAS  PubMed  Google Scholar 

  • Reiner O, Sapir T. Mark/Par-1 marking the polarity of migrating neurons. Adv Exp Med Biol. 2014;800:97–111. doi:10.1007/978-94-007-7687-6_6.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Boulan E, Macara IG. Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol. 2014;15:225–42. doi:10.1038/nrm3775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segu L, Pascaud A, Costet P, Darmon M, Buhot MC. Impairment of spatial learning and memory in ELKL Motif Kinase1 (EMK1/MARK2) knockout mice. Neurobiol Aging. 2008;29:231–40. doi:10.1016/j.neurobiolaging.2006.10.014.

    Article  CAS  PubMed  Google Scholar 

  • Shulman JM, Benton R, St Johnston D. The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localization to the posterior pole. Cell. 2000;101:377–88.

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Tian L, Nie J, Zhang H, Han X, Shi Y. Inactivation of MARK4, an AMP-activated protein kinase (AMPK)-related kinase, leads to insulin hypersensitivity and resistance to diet-induced obesity. J Biol Chem. 2012;287:38305–15. doi:10.1074/jbc.M112.388934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki A, Hirata M, Kamimura K, Maniwa R, Yamanaka T, Mizuno K, et al. aPKC acts upstream of PAR-1b in both the establishment and maintenance of mammalian epithelial polarity. Curr Biol. 2004;14:1425–35. doi:10.1016/j.cub.2004.08.021.

    Article  CAS  PubMed  Google Scholar 

  • Tang EI, Lee WM, Cheng CY. Coordination of actin- and microtubule-based cytoskeletons supports transport of spermatids and residual bodies/phagosomes during spermatogenesis in the rat testis. Endocrinology. 2016;157:1644–59. doi:10.1210/en.2015-1962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang EI, Mruk DD, Cheng CY. MAP/microtubule affinity-regulating kinases, microtubule dynamics, and spermatogenesis. J Endocrinol. 2013;217:R13–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang EI, Xiao X, Mruk DD, Qian XJ, Mok KW, Jenardhanan P, et al. Microtubule affinity-regulating kinase 4 (MARK4) is a component of the ectoplasmic specialization in the rat testis. Spermatogenesis. 2012;2:117–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang N, Chisholm A. Regulation of microtubule dynamics in axon regeneration: insights from C. elegans. F1000 Research. 2016; 5:F1000 Faculty Rev-764. doi:10.12688/f1000research.8197.1

    Google Scholar 

  • Timm T, Balusamy K, Li X, Biernat J, Mandelkow E, Mandelkow EM. Glycogen synthase kinase (GSK) 3beta directly phosphorylates Serine 212 in the regulatory loop and inhibits microtubule affinity-regulating kinase (MARK) 2. J Biol Chem. 2008;283:18873–82. doi:10.1074/jbc.M706596200.

    Article  CAS  PubMed  Google Scholar 

  • Uboha NV, Flajolet M, Nairn AC, Picciotto MR. A calcium- and calmodulin-dependent kinase Ialpha/microtubule affinity regulating kinase 2 signaling cascade mediates calcium-dependent neurite outgrowth. J Neurosci. 2007;27:4413–23. doi:10.1523/JNEUROSCI.0725-07.2007.

    Article  CAS  PubMed  Google Scholar 

  • Wu ZZ, Lu HP, Chao CC. Identification and functional analysis of genes which confer resistance to cisplatin in tumor cells. Biochem Pharmacol. 2010;80:262–76. doi:10.1016/j.bcp.2010.03.029.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health, NICHD, R01 HD056034 to C.Y.C., and U54 HD029990 Project 5 to C.Y.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Yan Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this entry

Cite this entry

Tang, E., Cheng, C.Y. (2016). MAP/Microtubule Affinity-Regulating Kinase. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6438-9_101717-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6438-9_101717-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6438-9

  • Online ISBN: 978-1-4614-6438-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics