Encyclopedia of Signaling Molecules

Living Edition
| Editors: Sangdun Choi

Inhibitor of KappaB

  • Takashi MaruYama
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6438-9_101651-1


Historical Background

The transcriptional factor NF-κB – a key regulator of cellular events such as cell growth, immune response, and cell survival – was first identified by Dr. David Baltimore’s group (Sen and Baltimore 1986). Inhibitor of kappaB (IκB) can form a complex with NF-κB and control these events. IκB family proteins harbor an ankyrin (ANK) repeat domain, a core motif of NF-κB binding, which was first identified in the cell-cycle gene sequences of yeast and Drosophila in 1987 (Breeden and Nasmyth 1987). IκB family members have been found to have conserved ANK repeat domains, including β-strand and α-helix repeat sequences. On the basis of extensive studies, nine IκB family proteins harboring ANK repeats have been identified, and these IκB proteins are...


Chronic Lymphocytic Leukemia Experimental Autoimmune Encephalomyelitis Control Gene Regulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Baeuerle PA, Baltimore D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science. 1988;242:540–6.CrossRefPubMedGoogle Scholar
  2. Beg AA, Sha WC, Bronson RT, Baltimore D. Constitutive NF-kappa B activation, enhanced granulopoiesis, and neonatal lethality in I kappa B alpha-deficient mice. Genes Dev. 1995;9:2736–46.CrossRefPubMedGoogle Scholar
  3. Breeden L, Nasmyth K. Similarity between cell-cycle genes of budding yeast and fission yeast and the Notch gene of Drosophila. Nature. 1987;329:651–4. doi:10.1038/329651a0.CrossRefPubMedGoogle Scholar
  4. Ferreiro DU, Komives EA. Molecular mechanisms of system control of NF-kappaB signaling by IkappaBalpha. Biochemistry. 2010;49:1560–7. doi:10.1021/bi901948j.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Fiorini E, Schmitz I, Marissen WE, Osborn SL, Touma M, Sasada T, et al. Peptide-induced negative selection of thymocytes activates transcription of an NF-kappa B inhibitor. Mol Cell. 2002;9:637–48.CrossRefPubMedGoogle Scholar
  6. Franzoso G, Bours V, Azarenko V, Park S, Tomita-Yamaguchi M, Kanno T, et al. The oncoprotein Bcl-3 can facilitate NF-kappa B-mediated transactivation by removing inhibiting p50 homodimers from select kappa B sites. EMBO J. 1993;12:3893–901.PubMedPubMedCentralGoogle Scholar
  7. Franzoso G, Carlson L, Scharton-Kersten T, Shores EW, Epstein S, Grinberg A, et al. Critical roles for the Bcl-3 oncoprotein in T cell-mediated immunity, splenic microarchitecture, and germinal center reactions. Immunity. 1997;6:479–90.CrossRefPubMedGoogle Scholar
  8. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132:344–62. doi:10.1016/j.cell.2008.01.020.CrossRefPubMedGoogle Scholar
  9. Huxford T, Huang DB, Malek S, Ghosh G. The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. Cell. 1998;95:759–70.CrossRefPubMedGoogle Scholar
  10. Jackman RW, Wu CL, Kandarian SC. The ChIP-seq-defined networks of Bcl-3 gene binding support its required role in skeletal muscle atrophy. PLoS One. 2012;7:e51478. doi:10.1371/journal.pone.0051478.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kitamura H, Kanehira K, Okita K, Morimatsu M, Saito M. MAIL: a novel nuclear I kappa B protein that potentiates LPS-induced IL-6 production. FEBS Lett. 2000;485:53–6.CrossRefPubMedGoogle Scholar
  12. Kobayashi S, Hara A, Isagawa T, Manabe I, Takeda K, MaruYama T. The nuclear IkappaB family protein IkappaBNS influences the susceptibility to experimental autoimmune encephalomyelitis in a murine model. PLoS One. 2014;9:e110838. doi:10.1371/journal.pone.0110838.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kuwata H, Watanabe Y, Miyoshi H, Yamamoto M, Kaisho T, Takeda K, et al. IL-10-inducible Bcl-3 negatively regulates LPS-induced TNF-alpha production in macrophages. Blood. 2003;102:4123–9. doi:10.1182/blood-2003-04-1228.CrossRefPubMedGoogle Scholar
  14. Massoumi R, Chmielarska K, Hennecke K, Pfeifer A, Fassler R. Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling. Cell. 2006;125:665–77. doi:10.1016/j.cell.2006.03.041.CrossRefPubMedGoogle Scholar
  15. Ohno H, Takimoto G, McKeithan TW. The candidate proto-oncogene bcl-3 is related to genes implicated in cell lineage determination and cell cycle control. Cell. 1990;60:991–7.CrossRefPubMedGoogle Scholar
  16. Okuma A, Hoshino K, Ohba T, Fukushi S, Aiba S, Akira S, et al. Enhanced apoptosis by disruption of the STAT3-IkappaB-zeta signaling pathway in epithelial cells induces Sjogren’s syndrome-like autoimmune disease. Immunity. 2013;38:450–60. doi:10.1016/j.immuni.2012.11.016.CrossRefPubMedGoogle Scholar
  17. Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986;46:705–16.CrossRefPubMedGoogle Scholar
  18. Thompson JE, Phillips RJ, Erdjument-Bromage H, Tempst P, Ghosh S. I kappa B-beta regulates the persistent response in a biphasic activation of NF-kappa B. Cell. 1995;80:573–82.CrossRefPubMedGoogle Scholar
  19. Yamamoto M, Yamazaki S, Uematsu S, Sato S, Hemmi H, Hoshino K, et al. Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IkappaBzeta. Nature. 2004;430:218–22. doi:10.1038/nature02738.CrossRefPubMedGoogle Scholar
  20. Zabel U, Baeuerle PA. Purified human I kappa B can rapidly dissociate the complex of the NF-kappa B transcription factor with its cognate DNA. Cell. 1990;61:255–65.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2016

Authors and Affiliations

  1. 1.Department of Immunology, Graduate School of MedicineAkita UniversityAkitaJapan