Encyclopedia of Signaling Molecules

Living Edition
| Editors: Sangdun Choi

G Protein–Coupled Receptor Kinase

  • Michael Steury
  • Narayanan Parameswaran
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6438-9_101633-1


Historical Background

G protein–coupled receptor kinases (GRKs) represent a family of seven serine/threonine kinases that, based on their sequence similarities, can further be broken down into three subfamilies. These subfamilies include: GRK1, composed of GRK1 (rhodopsin kinase) and GRK7 (cone opsin kinase); GRK2, including GRK2 and GRK3; and GRK4, made up of GRK4, 5, and 6. These kinases were initially identified for their ability to phosphorylate G protein–coupled receptors (GPCRs). Phosphorylation of the receptor by GRKs leads to the recruitment of β-arrestins and consequently desensitization and internalization of the receptor. This internalization can then lead to additional signaling cascades. Furthermore, it has recently become evident that individual GRKs can interact in a kinase dependent or independent manner with nonreceptor substrates and influence a variety of physiological functions and pathologies.

Evolutionarily, GRKs are present in...


Dopamine Receptor Receptor Desensitization Pleckstrin Homology Domain Night Blindness Palmitoylation Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Benovic JL, DeBlasi A, Stone WC, Caron MG, Lefkowitz RJ. Beta-adrenergic receptor kinase: primary structure delineates a multigene family. Science. 1989;246:235–40.CrossRefPubMedGoogle Scholar
  2. Benovic JL, Strasser RH, Caron MG, Lefkowitz RJ. Beta-adrenergic receptor kinase: identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proc Natl Acad Sci USA. 1986;83:2797–801.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bownds D, Dawes J, Miller J, Stahlman M. Phosphorylation of frog photoreceptor membranes induced by light. Nature. 1972;237:125–7.Google Scholar
  4. Buczylko J, Gutmann C, Palczewski K. Regulation of rhodopsin kinase by autophosphorylation. Proc Natl Acad Sci USA. 1991;88(6):2568–72.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG. Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci. 2004;27:107–44.CrossRefPubMedGoogle Scholar
  6. Gurevich EV, Tesmer JJ, Mushegian A, Gurevich VV. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther. 2012;133:40–69.CrossRefPubMedGoogle Scholar
  7. Gurevich VV, Gurevich EV. G protein-coupled receptor kinases (GRKs) history: evolution and discovery. In: Gurevich VV, Gurevich EV, Tesmer J, editors. G protein-coupled receptor kinases. Springer: New York; 2016. p. 3–22. CrossRefGoogle Scholar
  8. Inglese J, Freedman NJ, Koch WJ, Lefkowitz RJ. Structure and mechanism of the G protein-coupled receptor kinases. J Biol Chem. 1993;268(32):23735–8.PubMedGoogle Scholar
  9. Inglese J, Koch WJ, Caron MG, Lefkowitz RJ. Isoprenylation in regulation of signal transduction by G-protein-coupled receptor kinases. Nature. 1992;359(6391):147–50.CrossRefPubMedGoogle Scholar
  10. Jaber M, Koch WJ, Rockman H, Smith B, Bond RA, Sulik KK, Ross Jr J, Lefkowitz RJ, Caron MG, Giros B. Essential role of beta-adrenergic receptor kinase 1 in cardiac development and function. Proc Natl Acad Sci USA. 1996;93:12974–9.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Krupnick JG, Gurevich VV, Benovic JL. Mechanism of quenching of photo- transduction. Binding competition between arrestin and transducin for phosphorhodopsin. J Biol Chem. 1997;272(29):18125–31.CrossRefPubMedGoogle Scholar
  12. Li L, Homan KT, Vishnivetskiy SA, Manglik A, Tesmer JJ, Gurevich VV, Gurevich EV. G protein-coupled receptor kinases of the GRK4 protein subfamily phosphorylate inactive G protein-coupled receptors (GPCRs). J Biol Chem. 2015;290(17):10775–90. doi:10.1074/jbc.M115.644773.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Orban T, Palczewski K. Structure and function of G-protein-coupled receptor kinases 1 and 7. In: Gurevich VV, Gurevich EV, Tesmer J, editors. G protein-coupled receptor kinases. Springer: New York; 2016. p. 25–43. CrossRefGoogle Scholar
  14. Packiriswamy N, Parameswaran N. G-protein-coupled receptor kinase in inflammation and disease. Genes Immun. 2015;16:367–77.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Pitcher J, Freedman N, Lefkowitz RJ. G protein-coupled receptor kinases. Annu Rev Biochem. 1998;67:653–92.CrossRefPubMedGoogle Scholar
  16. Premont RT, Gainetdinov RR. Physiological roles of G protein-coupled receptor kinases and arrestins. Annu Rev Physiol. 2007;69:511–34.CrossRefPubMedGoogle Scholar
  17. Premont RT, Macrae AD, Aparicio SA, Kendall HE, Welch JE, Lefkowitz RJ. The GRK4 subfamily of G protein-coupled receptor kinases: alternative splicing, gene organization, and sequence conservation. J Biol Chem. 1999;274(41):29381–9.CrossRefPubMedGoogle Scholar
  18. Ribas C, Penela P, Murga C, Salcedo A, Garcia-Hoz C, Jurado-Pueyo M, Aymerich I, Mayor F. The G protein-coupled receptor kinase (GRK) interactome: role of GRKs in GPCR regulation and signaling. Biochim Biophys Acta. 2007;1768:913–22.CrossRefPubMedGoogle Scholar
  19. Sato PY, Chuprun JK, Schwartz M, Koch WJ. The evolving impact of G protein-coupled receptor kinases in cardiac health and disease. Physiol Rev. 2015;95(2):377–404.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Xu H, Jiang X, Shen K, Fischer CC, Wedegaertner PB. The regulator of G protein signaling (RGS) domain of G protein- coupled receptor kinase 5 (GRK5) regulates plasma membrane localization and function. Mol Biol Cell. 2014;25(13):2105–15.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2016

Authors and Affiliations

  1. 1.Department of PhysiologyMichigan State UniversityEast LansingUSA