Encyclopedia of Signaling Molecules

Living Edition
| Editors: Sangdun Choi

LGR4 (Leucine-Rich Repeat G-Protein Coupled Receptor 4)

  • Shiying Liu
  • Yue Yin
  • Weizhen Zhang
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6438-9_101612-1

Synonyms

Historical Background

Leucine-rich repeat G-protein-coupled receptors (LGRs) are a class of G-protein-coupled receptors characterized by a large extracellular domain containing several leucine-rich repeats (LRR) (Van Loy et al. 2008). According to phylogenetic analysis, there are three known LGR subgroups in mammals (Van Loy et al. 2008). Subtype A consists of receptors for glycoprotein including follicle-stimulating hormone (FSH), luteinizing hormone (LH), and chorionic gonadotropin (CG). All of which are dimeric proteins composed of a common α-subunit and a hormone-specific β-subunit (Van Loy et al. 2008). In mammals, subtype C refers to LGRs 7–8. This type of LGR receptors contains a unique N-terminal low-density lipoprotein (LDL) motif (Van Loy et al. 2008). Subtype B is composed of three mammalian receptors LGR4–6 characterized by the presence of 13–18 leucine-rich repeats (LRRs) (Van Loy et al. 2008). Many...

Keywords

Dextran Sulfate Sodium Biliary Tract Cancer Paneth Cell Microsomal Triglyceride Transfer Protein Efferent Duct 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Notes

Acknowledgment

This work was supported by grants from the National Natural Science Foundation of China (81330010, 81390354) and American Diabetes Association grant #1-13-BS-225.

References

  1. Deng C, Reddy P, Cheng Y, Luo CW, Hsiao CL, Hsueh AJ. Multi-functional norrin is a ligand for the LGR4 receptor. J Cell Sci. 2013;126(Pt 9):2060–8. doi:10.1242/jcs.123471.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Gao Y, Kitagawa K, Hiramatsu Y, Kikuchi H, Isobe T, Shimada M, et al. Up-regulation of GPR48 induced by down-regulation of p27Kip1 enhances carcinoma cell invasiveness and metastasis. Cancer Res. 2006;66(24):11623–31. doi:10.1158/0008-5472.CAN-06-2629.CrossRefPubMedGoogle Scholar
  3. Hoshii T, Takeo T, Nakagata N, Takeya M, Araki K, Yamamura K. LGR4 regulates the postnatal development and integrity of male reproductive tracts in mice. Biol Reprod. 2007;76(2):303–13. doi:10.1095/biolreprod.106.054619.CrossRefPubMedGoogle Scholar
  4. Kida T, Oyama K, Sone M, Koizumi M, Hidema S, Nishimori K. Lgr4 is required for endometrial receptivity acquired through ovarian hormone signaling. Biosci Biotechnol Biochem. 2014;78(11):1813–6. doi:10.1080/09168451.2014.936353.CrossRefPubMedGoogle Scholar
  5. Kinzel B, Pikiolek M, Orsini V, Sprunger J, Isken A, Zietzling S, et al. Lgr4-deficient mice showed premature differentiation of ureteric bud with reduced expression of Wnt effector Lef1 and Gata3. Dev Biol. 2014;390(2):181–90. doi:10.1002/dvdy.22651.CrossRefPubMedGoogle Scholar
  6. Koizumi M, Oyama K, Yamakami Y, Kida T, Satoh R, Kato S, et al. Lgr4 controls specialization of female gonads in mice. Biol Reprod. 2015;93(4):90. doi:10.1095/biolreprod.114.123638.CrossRefPubMedGoogle Scholar
  7. Leushacke M, Barker N. Lgr5 and Lgr6 as markers to study adult stem cell roles in self-renewal and cancer. Oncogene. 2012;31(25):3009–22. doi:10.1038/onc.2011.479.CrossRefPubMedGoogle Scholar
  8. Li Z, Zhang W, Mulholland MW. LGR4 and its role in intestinal protection and energy metabolism. Front Endocrinol. 2015;6(Lausanne):131. doi:10.3389/fendo.2015.00131.Google Scholar
  9. Loh ED, Broussard SR, Kolakowski LF. Molecular characterization of a novel glycoprotein hormone G-protein-coupled receptor. Biochem Biophys Res Commun. 2001;282(3):757–64. doi:10.1006/bbrc.2001.4625.CrossRefPubMedGoogle Scholar
  10. Luo W, Rodriguez M, Valdez JM, Zhu X, Tan K, Li D, et al. Lgr4 is a key regulator of prostate development and prostate stem cell differentiation. Stem Cells. 2013;31(11):2492–505. doi:10.1002/stem.1484.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Mohri Y, Kato S, Umezawa A, Okuyama R, Nishimori K. Impaired hair placode formation with reduced expression of hair follicle-related genes in mice lacking Lgr4. Dev Dyn. 2008;237(8):2235–42. doi:10.1002/dvdy.21639.CrossRefPubMedGoogle Scholar
  12. Pan H, Cui H, Liu S, Qian Y, Wu H, Li L, et al. Lgr4 gene regulates corpus luteum maturation through modulation of the WNT-mediated EGFR-ERK signaling pathway. Endocrinology. 2014;155(9):3624–37. doi:10.1210/en.2013-2183.CrossRefPubMedGoogle Scholar
  13. Styrkarsdottir U, Thorleifsson G, Sulem P, Gudbjartsson DF, Sigurdsson A, Jonasdottir A, et al. Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits. Nature. 2013;497(7450):517–20. doi:10.1038/nature12124.CrossRefPubMedGoogle Scholar
  14. Sun Y, Hong J, Chen M, Ke Y, Zhao S, Liu W, Ma Q, et al. Ablation of Lgr4 enhances energy adaptation in skeletal muscle via activation of Ampk/Sirt1/Pgc1alpha pathway. Biochem Biophys Res Commun. 2015;464(2):396–400. doi:10.1016/j.bbrc.2015.06.066.CrossRefPubMedGoogle Scholar
  15. Van Loy T, Vandersmissen HP, Van Hiel MB, Poels J, Verlinden H, Badisco L, et al. Comparative genomics of leucine-rich repeats containing G protein-coupled receptors and their ligands. Gen Comp Endocrinol. 2008;155(1):14–21. doi:10.1016/j.ygcen.2007.06.022.CrossRefPubMedGoogle Scholar
  16. Wang Z, Jin C, Li H, Li C, Hou Q, Liu M, et al. GPR48-Induced keratinocyte proliferation occurs through HB-EGF mediated EGFR transactivation. FEBS Lett. 2010;584(18):4057–62. doi:10.1016/j.febslet.2010.08.028.CrossRefPubMedGoogle Scholar
  17. Wang Y, Dong J, Li D, Lai L, Siwko S, Li Y, et al. Lgr4 regulates mammary gland development and stem cell activity through the pluripotency transcription factor Sox2. Stem Cells. 2013;31(9):1921–31. doi:10.1002/stem.1438.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Wu J, Xie N, Xie K, Zeng J, Cheng L, Lei Y, et al. GPR48, a poor prognostic factor, promotes tumor metastasis and activates beta-catenin/TCF signaling in colorectal cancer. Carcinogenesis. 2013;34(12):2861–9. doi:10.1093/carcin/bgt229.CrossRefPubMedGoogle Scholar
  19. Yi J, Xiong W, Gong X, Bellister S, Ellis LM, Liu Q. Analysis of LGR4 receptor distribution in human and mouse tissues. PLoS One. 2013;8(10):e78144. doi:10.1371/journal.pone.0078144.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Yi T, Weng J, Siwko S, Luo J, Li D, Liu M. LGR4/GPR48 inactivation leads to aniridia-genitourinary anomalies-mental retardation syndrome defects. J Biol Chem. 2014;289(13):8767–80. doi:10.1074/jbc.M113.530816.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Yu CY, Liang GB, Du P, Liu YH. Lgr4 promotes glioma cell proliferation through activation of Wnt signaling. Asian Pac J Cancer Prev. 2013;14(8):4907–11.CrossRefPubMedGoogle Scholar
  22. Zhu J, Hou Q, Dong XD, Wang Z, Chen X, Zheng D, et al. Targeted deletion of the murine Lgr4 gene decreases lens epithelial cell resistance to oxidative stress and induces age-related cataract formation. PLoS One. 2015;10(3):e0119599. doi:10.1371/journal.pone.0119599.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2016

Authors and Affiliations

  1. 1.Department of Physiology and Pathophysiology, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
  2. 2.Department of SurgeryUniversity of Michigan Medical CenterAnn ArborUSA