Skip to main content

Dipeptidyl Peptidase 4

  • Living reference work entry
  • First Online:
  • 169 Accesses

Synonyms

ADABP; CD26; DPP4; DPPIV

Historical Background

Nature has evolved a number of regulatory, neuronal, and immune peptides with a proline residue at the penultimate position determining their structural conformation and biological activity. Generally, the proline peptide bonds are resistant to proteolytic cleavage, yet an exclusive number of postproline-specific peptidases have emerged to regulate these peptides. The best-characterized one is dipeptidyl peptidase 4 (DPP4), though additional functional homologues of DPP4-like enzymes have been discovered, some structurally related, others without any structural homology. Since DPP4 is involved in glucose homeostasis and immune response, it is of medical and pharmaceutical interest to distinguish between these enzymes (Klemann et al. 2016; Lambeir et al. 2003; Wagner et al. 2016b).

DPP4 [EC 3.4.14.5] was first discovered in 1966 by Hopsu-Havu and Glenner and denoted with glycyl-prolyl-β-naphtylamidase. Other names include...

This is a preview of subscription content, log in via an institution.

References

  • Aertgeerts K, et al. Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation. Protein Sci. 2004;13(2):412–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohm SK, et al. Human dipeptidyl peptidase IV gene promoter: tissue-specific regulation from a TATA-less GC-rich sequence characteristic of a housekeeping gene promoter. Biochem J. 1995;311(Pt 3):835–43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung KM, et al. The dimeric transmembrane domain of prolyl dipeptidase DPP-IV contributes to its quaternary structure and enzymatic activities. Protein Sci. 2010;19(9):1627–38. doi:10.1002/pro.443.

    Google Scholar 

  • Cynis H, Lichtenthaler S, Wagner L, Demuth H-U. Proteases in the nervous system. In: Brix K, Stöcker W, editors. Proteases: structures and functions. Wien: Springer; 2013. p. 319–71.

    Chapter  Google Scholar 

  • De Meester I, et al. CD26, let it cut or cut it down. Immunol Today. 1999;20(8):367–75.

    Article  CAS  PubMed  Google Scholar 

  • De Meester I, Durinx C, Proost P, Scharpe S, Lambeir AM. DP IV – Natural substrates of medical importance. In: Langner J, Ansorge S, editors. Ectopeptidases. New York: Kluwer Academic/Plenum Publishers; 2002. p. 223–57.

    Chapter  Google Scholar 

  • Elenkov IJ, et al. The sympathetic nerve – an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 2000;52(4):595–638.

    CAS  PubMed  Google Scholar 

  • Engel M, et al. The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proc Natl Acad Sci USA. 2003;100(9):5063–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frerker N, et al. Neuropeptide Y (NPY) cleaving enzymes: structural and functional homologues of dipeptidyl peptidase 4. Peptides. 2007;28(2):257–68.

    Article  CAS  PubMed  Google Scholar 

  • Frerker N, et al. Phenotyping of congenic dipeptidyl peptidase 4 (DP4) deficient Dark Agouti (DA) rats suggests involvement of DP4 in neuro-, endocrine, and immune functions. Clin Chem Lab Med. 2009;47(3):275–87.

    Article  CAS  PubMed  Google Scholar 

  • Harmar AJ. Family-B G-protein-coupled receptors. Genome Biol. 2001;2(12):3001–13.

    Article  Google Scholar 

  • Ikushima H, et al. Internalization of CD26 by mannose 6-phosphate/insulin-like growth factor II receptor contributes to T cell activation. Proc Natl Acad Sci USA. 2000;97(15):8439–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii T, et al. CD26-mediated signaling for T cell activation occurs in lipid rafts through its association with CD45RO. Proc Natl Acad Sci USA. 2001;98(21):12138–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klemann C, et al. Cut to the chase: a review of CD26/dipeptidyl peptidase-4’s (DPP4) entanglement in the immune system. Clin Exp Immunol. 2016;185(1):1–21.

    Article  CAS  PubMed  Google Scholar 

  • Lambeir AM, et al. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci. 2003;40(3):209–94.

    Article  CAS  PubMed  Google Scholar 

  • Mortier A, et al. CD26/dipeptidylpeptidase IV-chemokine interactions: double-edged regulation of inflammation and tumor biology. J Leukoc Biol. 2016;99(6):955–69.

    Article  CAS  PubMed  Google Scholar 

  • Ohnuma K, et al. Revisiting an old acquaintance: CD26 and its molecular mechanisms in T cell function. Trends Immunol. 2008a;29(6):295–301.

    Article  CAS  PubMed  Google Scholar 

  • Ohnuma K, et al. Role of CD26/dipeptidyl peptidase IV in human T cell activation and function. Front Biosci. 2008b;13:2299–310.

    Article  CAS  PubMed  Google Scholar 

  • Ohnuma K, et al. Dipeptidyl peptidase in autoimmune pathophysiology. Adv Clin Chem. 2011;53:51–84.

    Article  CAS  PubMed  Google Scholar 

  • Pacheco R, et al. CD26, adenosine deaminase, and adenosine receptors mediate costimulatory signals in the immunological synapse. Proc Natl Acad Sci USA. 2005;102(27):9583–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen HB, et al. Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nat Struct Biol. 2003;10(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  • Rohrborn D, et al. Shedding of dipeptidyl peptidase 4 is mediated by metalloproteases and up-regulated by hypoxia in human adipocytes and smooth muscle cells. FEBS Lett. 2014;588(21):3870–7.

    Article  PubMed  Google Scholar 

  • Rohrborn D, et al. DPP4 in Diabetes. Front Immunol. 2015;6:386.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sah R, et al. Interaction of NPY compounds with the rat glucocorticoid-induced receptor (GIR) reveals similarity to the NPY-Y2 receptor. Peptides. 2007;28(2):302–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salgado FJ, et al. A role for IL-12 in the regulation of T cell plasma membrane compartmentation. J Biol Chem. 2003;278(27):24849–57.

    Article  CAS  PubMed  Google Scholar 

  • Sherwood NM, et al. The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev. 2000;21(6):619–70.

    CAS  PubMed  Google Scholar 

  • Wagner L, et al. Proteolytic degradation of neuropeptide Y (NPY) from head to toe: identification of novel NPY-cleaving peptidases and potential drug interactions in CNS and Periphery. J Neurochem. 2015;135(5):1019–37.

    Article  CAS  PubMed  Google Scholar 

  • Wagner L, et al. Identifying neuropeptide Y (NPY) as the main stress-related substrate of dipeptidyl peptidase 4 (DPP4) in blood circulation. Neuropeptides. 2016a;57:21–34.

    Article  CAS  PubMed  Google Scholar 

  • Wagner L, et al. Unravelling the immunological roles of dipeptidyl peptidase 4 (DPP4) activity and/or structure homologue (DASH) proteins. Clin Exp Immunol. 2016b;184(3):265–83.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, et al. Soluble DPP4 originates in part from bone marrow cells and not from the kidney. Peptides. 2014;57:109–17.

    Article  CAS  PubMed  Google Scholar 

  • Waumans Y, et al. The dipeptidyl peptidase family, prolyl oligopeptidase, and prolyl carboxypeptidase in the immune system and inflammatory disease including atherosclerosis. Front Immunol. 2015;6:387.

    Article  PubMed  PubMed Central  Google Scholar 

  • Waumans Y, et al. The dipeptidyl peptidases 4, 8, and 9 in mouse monocytes and macrophages: DPP8/9 inhibition attenuates M1 macrophage activation in mice. Inflammation. 2016;39(1):413–24.

    Article  CAS  PubMed  Google Scholar 

  • Weihofen WA, et al. Crystal structure of CD26/dipeptidyl-peptidase IV in complex with adenosine deaminase reveals a highly amphiphilic interface. J Biol Chem. 2004;279(41):43330–5.

    Article  CAS  PubMed  Google Scholar 

  • Weihofen WA, et al. Crystal structures of HIV-1 Tat-derived nonapeptides Tat-(1-9) and Trp2-Tat-(1-9) bound to the active site of dipeptidyl-peptidase IV (CD26). J Biol Chem. 2005;280(15):14911–7.

    Article  CAS  PubMed  Google Scholar 

  • Yu DM, et al. The dipeptidyl peptidase IV family in cancer and cell biology. FEBS J. 2010;277(5):1126–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leona Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this entry

Cite this entry

Wagner, L. (2016). Dipeptidyl Peptidase 4. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6438-9_101580-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6438-9_101580-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6438-9

  • Online ISBN: 978-1-4614-6438-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics