Skip to main content

MDM2 (Murine Double Minute 2)

  • Living reference work entry
  • First Online:
Encyclopedia of Signaling Molecules
  • 102 Accesses

Synonyms

Double minute 2 protein; HDM2 (human homolog of MDM2); p53-binding protein MDM2

Historical Background

Mdm2 (murine double minute 2) was first discovered as one of two gene products that were amplified in the spontaneously transformed mouse 3T3-DM cell line (Cahilly-Snyder et al. 1987). Human MDM2 was subsequently cloned by screening a human cDNA library with the mouse Mdm2 probe (Oliner et al. 1992). Mdm2-overexpressing NIH-3T3 and Rat2 fibroblast cells formed tumors when subcutaneously injected into nude mice, indicating the tumorigenic potential of Mdm2 (Fakharzadeh et al. 1991). Supporting this notion, the MDM2 gene was found to be amplified in sarcomas when it was first cloned (Oliner et al. 1992). Similarly, MDM2 overexpression and amplification were observed in other cancer types, including a subset of lymphoma (Watanabe et al. 1996). Later, it was shown that MDM2 formed a complex with p53, suppressing p53’s tumor suppressor functions (Momand et al. 1992; Oliner et al. 1992...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Barak Y, Juven T, Haffner R, Oren M. mdm2 expression is induced by wild type p53 activity. EMBO J. 1993;12:461–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biderman L, Manley JL, Prives C. Mdm2 and MdmX as regulators of gene expression. Genes Cancer. 2012;3:264–73. doi:10.1177/1947601912455331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blattner C, Hay T, Meek DW, Lane DP. Hypophosphorylation of Mdm2 augments p53 stability. Mol Cell Biol. 2002;22:6170–82. doi:10.1128/MCB.22.17.6170-6182.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC, Bargonetti J, Bartel F, Taubert H, Wuerl P, Onel K, Yip L, Hwang SJ, Strong LC, Lozano G, Levine AJ. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell. 2004;119:591–602. doi:10.1016/j.cell.2004.11.022.

    Article  CAS  PubMed  Google Scholar 

  • Boyd SD, Tsai KY, Jacks T. An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nat Cell Biol. 2000a;2:563–8. doi:10.1038/35023500.

    Article  CAS  PubMed  Google Scholar 

  • Burgess A, Chia KM, Haupt S, Thomas D, Haupt Y, Lim E. Clinical overview of MDM2/X-targeted therapies. Front Oncol. 2016;6:7. doi:10.3389/fonc.2016.00007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cahilly-Snyder L, Yang-Feng T, Francke U, George DL. Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3 T3 cell line. Somat Cell Mol Genet. 1987;13:235–44. doi:10.1007/BF01535205.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Marechal VI, Levine AJ. Mapping of the p53 and mdm-2 interaction domains. Mol Cell Biol. 1993;13:4107–14. doi:10.1128/MCB.13.7.4107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Q, Chen L, Li Z, Lane WS, Chen J. ATM activates p53 by regulating MDM2 oligomerization and E3 processivity. EMBO J. 2009;28:3857–67. doi:10.1038/emboj.2009.294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Q, Cross B, Li B, Chen L, Li Z, Chen J. Regulation of MDM2 E3 ligase activity by phosphorylation after DNA damage. Mol Cell Biol. 2011;31:4951–63. doi:10.1128/MCB.05553-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummins JM, Rago C, Kohli M, Kinzler KW, Lengauer C, Vogelstein B. Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature. 2004;428:1. doi:10.1038/nature02501.

    Article  PubMed  Google Scholar 

  • Dei Tos AP, Doglioni C, Piccinin S, Sciot R, Furlanetto A, Boiocchi M, Dal Cin P, Maestro R, Fletcher CD, Tallini G. Coordinated expression and amplification of the MDM2, CDK4, and HMGI-C genes in atypical lipomatous tumours. J Pathol. 2000;190:531–6. doi:10.1002/(SICI)1096-9896(200004)190:5<531::AID-PATH579>3.0.CO;2-W.

    Article  CAS  PubMed  Google Scholar 

  • Fakharzadeh SS, Trusko SP, George DL. Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J. 1991;10:1565–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng J, Tamaskovic R, Yang Z, Brazil DP, Merlo A, Hess D, Hemmings BA. Stabilization of Mdm2 via decreased ubiquitination is mediated by protein kinase B/Akt-dependent phosphorylation. J Biol Chem. 2004;279:35510–7. doi:10.1074/jbc.M404936200.

    Article  CAS  PubMed  Google Scholar 

  • Ganguli G, Wasylyk B. p53-Independent functions of MDM2. Mol Cancer Res 2003;1:1027–1035.

    Google Scholar 

  • Gannon HS, Woda BA, Jones SN. ATM Phosphorylation of Mdm2 Ser394 regulates the amplitude and duration of the DNA damage response in mice. Cancer Cell. 2012;21:668–79. doi:10.1016/j.ccr.2012.04.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geyer RK, Zhong KY, Maki CG. The MDM2 RING-finger domain is required to promote p53 nuclear export. Nat Cell Biol. 2000;2:569–73. doi:10.1038/35023507.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg Z, Sionov RV, Berger M, Zwang Y, Perets R, Van Etten RA, Oren M, Taya Y, Haupt Y. Tyrosine phosphorylation of Mdm2 by c-Abl: implications for p53 regulation. EMBO J. 2002;21:3715–27. doi:10.1093/emboj/cdf384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–9. doi:10.1038/387296a0.

    Article  CAS  PubMed  Google Scholar 

  • He Y, Tollini L, Kim TH, Itahana Y, Zhang Y. The anaphase-promoting complex/cyclosome is an E3 ubiquitin ligase for Mdm2. Cell Cycle. 2014;13:2101–9. doi:10.4161/cc.29106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman AG, Hayano M, Poyurovsky MV, Shimada K, Skouta R, Prives C, Stockwell BR. Discovery of Mdm2-MdmX E3 ligase inhibitors using a cell-based ubiquitination assay. Cancer Discov. 2011;1:312–25. doi:10.1158/2159-8290.CD-11-0104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honda R, Yasuda H. Association of p19ARF with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J. 1999;18:22–7. doi:10.1093/emboj/18.1.22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honda R, Yasuda H. Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene. 2000;19:1473–6. doi:10.1038/sj.onc.1203464.

    Article  CAS  PubMed  Google Scholar 

  • Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 1997;420:25–7. doi:10.1016/S0014-5793(97)01480-4.

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Yan Z, Liao X, Li Y, Yang J, Wang ZG, Zuo Y, Kawai H, Shadfan M, Ganapathy S, Yuan ZM. The p53 inhibitors MDM2/MDMX complex is required for control of p53 activity in vivo. Proc Natl Acad Sci USA. 2011;108:12001–6. doi:10.1073/pnas.1102309108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inuzuka H, Tseng A, Gao D, Zhai B, Zhang Q, Shaik S, Wan L, Ang XL, Mock C, Yin H, Stommel JM, Gygi S, Lahav G, Asara J, Xiao Z-XJ, Kaelin WG, Harper JW, Wei W. Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCFbeta-TRCP ubiquitin ligase. Cancer Cell. 2010;18:147–59. doi:10.1016/j.ccr.2010.06.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itahana K, Mao H, Jin A, Itahana Y, Clegg HV, Lindström MS, Bhat KP, Godfrey VL, Evan GI, Zhang Y. Targeted inactivation of Mdm2 RING finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation. Cancer Cell. 2007;12:355–66. doi:10.1016/j.ccr.2007.09.007.

    Article  CAS  PubMed  Google Scholar 

  • Jones SN, Roe AE, Donehower LA, Bradley A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature. 1995;378:206–8. doi:10.1038/378206a0.

    Article  CAS  PubMed  Google Scholar 

  • Jones SN, Hancock AR, Vogel H, Donehower LA, Bradley A. Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proc Natl Acad Sci USA. 1998;95:15608–12. doi:10.1073/pnas.95.26.15608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai H, Wiederschain D, Yuan ZM. Critical contribution of the MDM2 acidic domain to p53 ubiquitination. Mol Cell Biol. 2003;23:4939–47. doi:10.1128/MCB.23.14.4939-4947.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korkolopoulou P, Christodoulou P, Kouzelis K, Hadjiyannakis M, Priftis A, Stamoulis G, Seretis A, Thomas-Tsagli E. MDM2 and p53 expression in gliomas: a multivariate survival analysis including proliferation markers and epidermal growth factor receptor. Br J Cancer. 1997;75:1269–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol. 2015;16:393–405. doi:10.1038/nrm4007.

    Article  CAS  PubMed  Google Scholar 

  • Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature. 1997;387:299–303. doi:10.1038/387299a0.

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa M, Kim J, Geradts J, Matsuura K, Liu L, Ran X, Xia W, Ribar TJ, Henao R, Dewhirst MW, Kim WJ. A network of substrates of the E3 ubiquitin ligases MDM2 and HUWE1 control apoptosis independently of p53. Sci Signal. 2013;6:ra32. doi:10.1126/scisignal.2003741.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Kurokawa M. Regulation of MDM2 stability after DNA damage. J Cell Physiol. 2015;230:2318–27. doi:10.1002/jcp.24994.

    Article  CAS  PubMed  Google Scholar 

  • Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W. Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science. 2003;302:1972–5. doi:10.1126/science.1091362.

    Article  CAS  PubMed  Google Scholar 

  • Linares LK, Kiernan R, Triboulet R, Chable-Bessia C, Latreille D, Cuvier O, Lacroix M, Le Cam L, Coux O, Benkirane M. Intrinsic ubiquitination activity of PCAF controls the stability of the oncoprotein Hdm2. Nat Cell Biol. 2007;9:331–8. doi:10.1038/ncb1545.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, He Y, Jin A, Tikunov AP, Zhou L, Tollini LA, Leslie P, Kim TH, Li LO, Coleman RA, Gu Z. Ribosomal protein–Mdm2–p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation. Proc Natl Acad Sci USA. 2014;111:E2414–22. doi:10.1073/pnas.1315605111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Ma O, Nguyen TA, Jones SN, Oren M, Donehower LA. The Wip1 phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory Loop. Cancer Cell. 2007;12:342–54. doi:10.1016/j.ccr.2007.08.033.

    Article  CAS  PubMed  Google Scholar 

  • Malonia SK, Dutta P, Santra MK, Green MR. F-box protein FBXO31 directs degradation of MDM2 to facilitate p53-mediated growth arrest following genotoxic stress. Proc Natl Acad Sci USA. 2015;112:8632–7. doi:10.1073/pnas.1510929112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayo LD, Turchi JJ, Berberich SJ. Mdm-2 phosphorylation by DNA-dependent protein kinase prevents interaction with p53. Cancer Res. 1997;57:5013–6.

    CAS  PubMed  Google Scholar 

  • Moll UM, Petrenko O. The MDM2-p53 interaction. Mol Cancer Res. 2003;1:1001–8.

    CAS  PubMed  Google Scholar 

  • Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 1992;69:1237–45. doi:10.1016/0092-8674(92)90644-R.

    Article  CAS  PubMed  Google Scholar 

  • Montes de Oca Luna R, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature. 1995;378:203–6. doi:10.1038/378203a0.

    Article  CAS  PubMed  Google Scholar 

  • Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature. 1992;358:80–3. doi:10.1038/358080a0.

    Article  CAS  PubMed  Google Scholar 

  • Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature. 1993;362:857–60. doi:10.1038/362857a0.

    Article  CAS  PubMed  Google Scholar 

  • Pant V, Xiong S, Iwakuma T, Quintás-Cardama A, Lozano G. Heterodimerization of Mdm2 and Mdm4 is critical for regulating p53 activity during embryogenesis but dispensable for p53 and Mdm2 stability. Proc Natl Acad Sci USA. 2011;108:11995–2000. doi:10.1073/pnas.1102241108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry ME, Piette J, Zawadzki JA, Harvey D, Levine AJ. The mdm-2 gene is induced in response to UV light in a p53-dependent manner. Proc Natl Acad Sci USA. 1993;90:11623–7. doi:10.1073/pnas.90.24.11623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips CL, Gerbing R, Alonzo T, Perentesis JP, Harley IT, Meshinchi S, Bhatla D, Radloff G, Davies SM. MDM2 polymorphism increases susceptibility to childhood acute myeloid leukemia: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2010;55:248–53. doi:10.1002/pbc.22519.

    Article  PubMed  PubMed Central  Google Scholar 

  • Post SM, Pant V, Abbas H, Quintás-Cardama A. Prognostic impact of the MDM2SNP309 allele in leukemia and lymphoma. Oncotarget. 2010;1:168–74. doi:10.18632/oncotarget.100712.

    Article  PubMed  PubMed Central  Google Scholar 

  • Riley MF, Lozano G. The many faces of MDM2 binding partners. Genes Cancer. 2012;3:226–39. doi:10.1177/1947601912455322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth J, Dobbelstein M, Freedman DA, Shenk T, Levine AJ. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 1998;17:554–64. doi:10.1093/emboj/17.2.554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roxburgh P, Hock AK, Dickens MP, Mezna M, Fischer PM, Vousden KH. Small molecules that bind the Mdm2 RING stabilize and activate p53. Carcinogenesis. 2012;33:791–8. doi:10.1093/carcin/bgs092.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ. Divorcing ARF and p53: an unsettled case. Nat Rev Cancer. 2006;6:663–73. doi:10.1038/nrc1954.

    Article  CAS  PubMed  Google Scholar 

  • Shieh SY, Ikeda M, Taya Y, Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997;91:325–34. doi:10.1016/S0092-8674(00)80416-X.

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki T, Nota A, Taya Y, Okamoto K. Functional role of Mdm2 phosphorylation by ATR in attenuation of p53 nuclear export. Oncogene. 2003;22:8870–80. doi:10.1038/sj.onc.1207176.

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Iyappan S, Scheffner M. Hetero-oligomerization with MdmX rescues the ubiquitin/Nedd8 ligase activity of RING finger mutants of Mdm2. J Biol Chem. 2007;282:10901–7. doi:10.1074/jbc.M610879200.

    Article  CAS  PubMed  Google Scholar 

  • Stad R, Little NA, Xirodimas DP, Frenk R, van der Eb AJ, Lane DP, Saville MK, Jochemsen AG. Mdmx stabilizes p53 and Mdm2 via two distinct mechanisms. EMBO Rep. 2001;2:1029–34. doi:10.1093/embo-reports/kve227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP, Saville MK. The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J. 2007;26:976–86. doi:10.1038/sj.emboj.7601567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stommel JM, Wahl GM. Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation. EMBO J. 2004;23:1547–56. doi:10.1038/sj.emboj.7600145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao W, Levine AJ. Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2-mediated degradation of p53. Proc Natl Acad Sci USA. 1999a;96:3077–80. doi:10.1073/pnas.96.6.3077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao W, Levine AJ. p19ARF stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc Natl Acad Sci USA. 1999b;96:6937–41. doi:10.1073/pnas.96.12.6937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tollini LA, Jin A, Park J, Zhang Y. Regulation of p53 by Mdm2 E3 ligase function is dispensable in embryogenesis and development, but essential in response to DNA damage. Cancer Cell. 2014;26:235–47. doi:10.1016/j.ccr.2014.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303:844–8. doi:10.1126/science.1092472.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Hotta T, Ichikawa A, Kinoshita T, Nagai H, Uchida T, Murate T, Saito H. The MDM2 oncogene overexpression in chronic lymphocytic leukemia and low-grade lymphoma of B-cell origin. Blood. 1994;84:3158–65.

    CAS  PubMed  Google Scholar 

  • Watanabe T, Ichikawa A, Saito H, Hotta T. Overexpression of the MDM2 oncogene in leukemia and lymphoma. Leuk Lymphoma. 1996;21:391–7. doi:10.3109/10428199609093436.

    Article  CAS  PubMed  Google Scholar 

  • Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D. Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol. 1999;1:20–6. doi:10.1038/8991.

    Article  CAS  PubMed  Google Scholar 

  • Yu GW, Rudiger S, Veprintsev D, Freund S, Fernandez-Fernandez MR, Fersht AR. The central region of HDM2 provides a second binding site for p53. Proc Natl Acad Sci USA. 2006;103:1227–32. doi:10.1073/pnas.0510343103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Lu H. Signaling to p53: ribosomal proteins find their way. Cancer Cell. 2009;16:369–77. doi:10.1016/j.ccr.2009.09.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol. 2001;3:973–82. doi:10.1038/ncb1101-973.

    Article  CAS  PubMed  Google Scholar 

  • Zhuo W, Zhang L, Ling J, Zhu B, Chen Z. MDM2 SNP309 variation contributes to leukemia risk: meta-analyses based on 7259 subjects. Leuk Lymphoma. 2012;53:2245–52. doi:10.3109/10428194.2012.691485.

    Article  CAS  PubMed  Google Scholar 

  • Zou Q, Jin J, Hu H, Li HS, Romano S, Xiao Y, Nakaya M, Zhou X, Cheng X, Yang P, Lozano G. USP15 stabilizes MDM2 to mediate cancer cell survival and inhibit antitumor T cell responses. Nat Immunol. 2014;15:562–70. doi:10.1038/ni.2885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from an NCI Career Development Award R00 CA140948 (to M.K.), American Cancer Society Institutional Research Grant IRG-82-003-30 (to M.K.), a Norris Cotton Cancer Center Prouty Grant (to M.K.), a Norris Cotton Cancer Center Leukemia/Lymphoma Fund (to M.K.), and Waterhouse Research Award (to Y.Y.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Kurokawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this entry

Cite this entry

Bang, S., Bhatt, H.C., Yue Chen, Y., Kurokawa, M. (2016). MDM2 (Murine Double Minute 2). In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6438-9_101574-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6438-9_101574-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6438-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics