Skip to main content

RHEB

  • Living reference work entry
  • First Online:
Encyclopedia of Signaling Molecules

Synonyms

Ras homologue enriched in brain

Historical Background

Rheb (Ras homologue enriched in brain) was originally identified as a small guanosine triphosphate (GTP)-binding protein upregulated in the brain in response to electroconvulsive shock (Yamagata et al. 1994). Despite its name, Rheb protein is ubiquitously expressed in a variety of tissues. Rheb is evolutionarily conserved between yeast and humans, and it belongs to the Ras subfamily. In mammals, two different Rheb genes have been identified: Rheb and RhebL (also called Rheb1 and Rheb2, respectively). Since the Rheb GTPase was found to be regulated by the Tsc1 and Tsc2 proteins, which are responsible for the tuberous sclerosis complex (TSC) (Pan et al. 2004), Rheb functions have been extensively investigated. Moreover, Rheb has been demonstrated to activate the mammalian target of rapamycin (mTOR) signaling pathway and to regulate protein translation, cell proliferation, cell size, and metabolism.

Protein and Gene Structure

T...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alves MM, Fuhler GM, Queiroz KC, Scholma J, Goorden S, Anink J, et al. PAK2 is an effector of TSC1/2 signaling independent of mTOR and a potential therapeutic target for Tuberous Sclerosis Complex. Sci Rep. 2015;5:14534. doi:10.1038/srep14534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai X, Ma D, Liu A, Shen X, Wang QJ, Liu Y, et al. Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science (New York, NY). 2007;318:977–80. doi:10.1126/science.1147379.

    Article  CAS  Google Scholar 

  • Cao Y, Tao L, Shen S, Xiao J, Wu H, Li B, et al. Cardiac ablation of Rheb1 induces impaired heart growth, endoplasmic reticulum-associated apoptosis and heart failure in infant mice. Int J Mol Sci. 2013;14:24380–98. doi:10.3390/ijms141224380.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh AP, Marshall CB, Coric T, Shim EH, Kirkman R, Ballestas ME, et al. Point mutations of the mTOR-RHEB pathway in renal cell carcinoma. Oncotarget. 2015;6:17895–910. doi:10.18632/oncotarget.4963.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goorden SM, Hoogeveen-Westerveld M, Cheng C, van Woerden GM, Mozaffari M, Post L, et al. Rheb is essential for murine development. Mol Cell Biol. 2011;31:1672–8. doi:10.1128/mcb.00985-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goorden SM, Abs E, Bruinsma CF, Riemslagh FW, van Woerden GM, Elgersma Y. Intact neuronal function in Rheb1 mutant mice: implications for TORC1-based treatments. Hum Mol Genet. 2015;24:3390–8. doi:10.1093/hmg/ddv087.

    Article  CAS  PubMed  Google Scholar 

  • Gracias NG, Shirkey-Son NJ, Hengst U. Local translation of TC10 is required for membrane expansion during axon outgrowth. Nat Commun. 2014;5:3506. doi:10.1038/ncomms4506.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heard JJ, Fong V, Bathaie SZ, Tamanoi F. Recent progress in the study of the Rheb family GTPases. Cell Signal. 2014;26:1950–7. doi:10.1016/j.cellsig.2014.05.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jewell JL, Russell RC, Guan KL. Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol. 2013;14:133–9. doi:10.1038/nrm3522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MN, Koh A, Park D, Jang JH, Kwak D, Jeon H, et al. Deacetylated alphabeta-tubulin acts as a positive regulator of Rheb GTPase through increasing its GTP-loading. Cell Signal. 2013;25:539–51. doi:10.1016/j.cellsig.2012.11.006.

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Werner H, Puschel AW. Rheb and mTOR regulate neuronal polarity through Rap1B. J Biol Chem. 2008;283:33784–92. doi:10.1074/jbc.M802431200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan D, Dong J, Zhang Y, Gao X. Tuberous sclerosis complex: from Drosophila to human disease. Trends Cell Biol. 2004;14:78–85. doi:10.1016/j.tcb.2003.12.006.

    Article  CAS  PubMed  Google Scholar 

  • Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell. 2007;25:903–15. doi:10.1016/j.molcel.2007.03.003.

    Article  CAS  PubMed  Google Scholar 

  • Sugiura H, Yasuda S, Katsurabayashi S, Kawano H, Endo K, Takasaki K, et al. Rheb activation disrupts spine synapse formation through accumulation of syntenin in tuberous sclerosis complex. Nat Commun. 2015;6:6842. doi:10.1038/ncomms7842.

    Article  CAS  PubMed  Google Scholar 

  • Tamai T, Yamaguchi O, Hikoso S, Takeda T, Taneike M, Oka T, et al. Rheb (Ras homologue enriched in brain)-dependent mammalian target of rapamycin complex 1 (mTORC1) activation becomes indispensable for cardiac hypertrophic growth after early postnatal period. J Biol Chem. 2013;288:10176–87. doi:10.1074/jbc.M112.423640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagata K, Sanders LK, Kaufmann WE, Yee W, Barnes CA, Nathans D, et al. rheb, a growth factor- and synaptic activity-regulated gene, encodes a novel Ras-related protein. J Biol Chem. 1994;269:16333–9.

    CAS  PubMed  Google Scholar 

  • Yasuda S, Sugiura H, Katsurabayashi S, Shimada T, Tanaka H, Takasaki K, et al. Activation of Rheb, but not of mTORC1, impairs spine synapse morphogenesis in tuberous sclerosis complex. Sci Rep. 2014;4:5155. doi:10.1038/srep05155.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Li S, Xu X, Li Y, Guan K, Arnold E, et al. Structural basis for the unique biological function of small GTPase RHEB. J Biol Chem. 2005;280:17093–100. doi:10.1074/jbc.M501253200.

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Zhou L, Du XX, Ji Y, Xu J, Tian J, et al. Rheb1 is required for mTORC1 and myelination in postnatal brain development. Dev Cell. 2011;20:97–108. doi:10.1016/j.devcel.2010.11.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou Y, Jiang W, Wang J, Li Z, Zhang J, Bu J, et al. Oligodendrocyte precursor cell-intrinsic effect of Rheb1 controls differentiation and mediates mTORC1-dependent myelination in brain. J Neurosci. 2014;34:15764–78. doi:10.1523/jneurosci.2267-14.2014.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadayuki Shimada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this entry

Cite this entry

Shimada, T., Sugiura, H., Yamagata, K. (2016). RHEB. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6438-9_101555-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6438-9_101555-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6438-9

  • Online ISBN: 978-1-4614-6438-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics