Skip to main content

C3G

  • Living reference work entry
  • First Online:
Encyclopedia of Signaling Molecules
  • 282 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ballif BA, Arnaud L, Arthur WT, Guris D, Imamoto A, Cooper JA. Activation of a Dab1/CrkL/C3G/Rap1 pathway in Reelin-stimulated neurons. Curr Biol. 2004;CB 14:606–10.

    Article  PubMed  Google Scholar 

  • Che YL, Luo SJ, Li G, Cheng M, Gao YM, Li XM, et al. The C3G/Rap1 pathway promotes secretion of MMP-2 and MMP-9 and is involved in serous ovarian cancer metastasis. Cancer Lett. 2015;359:241–9.

    Article  CAS  PubMed  Google Scholar 

  • Chiang SH, Baumann CA, Kanzaki M, Thurmond DC, Watson RT, Neudauer CL, et al. Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature. 2001;410:944–8.

    Article  CAS  PubMed  Google Scholar 

  • Dayma K, Radha V. Cytoskeletal remodeling by C3G to induce neurite-like extensions and inhibit motility in highly invasive breast carcinoma cells. Biochim Biophys Acta. 2011;1813:456–65.

    Article  CAS  PubMed  Google Scholar 

  • Dayma K, Ramadhas A, Sasikumar K, Radha V. Reciprocal negative regulation between the guanine nucleotide exchange factor C3G and beta-catenin. Genes Cancer. 2012;3:564–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez V, Jares P, Salaverria I, Gine E, Bea S, Aymerich M, et al. Gene expression profile and genomic changes in disease progression of early-stage chronic lymphocytic leukemia. Haematologica. 2008;93:132–6.

    Article  CAS  PubMed  Google Scholar 

  • Fukuyama T, Ogita H, Kawakatsu T, Fukuhara T, Yamada T, Sato T, et al. Involvement of the c-Src-Crk-C3G-Rap1 signaling in the nectin-induced activation of Cdc42 and formation of adherens junctions. J Biol Chem. 2005;280:815–25.

    Article  CAS  PubMed  Google Scholar 

  • Gaulton KJ, Willer CJ, Li Y, Scott LJ, Conneely KN, Jackson AU, et al. Comprehensive association study of type 2 diabetes and related quantitative traits with 222 candidate genes. Diabetes. 2008;57:3136–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gotoh T, Hattori S, Nakamura S, Kitayama H, Noda M, Takai Y, et al. Identification of Rap1 as a target for the Crk SH3 domain-binding guanine nucleotide-releasing factor C3G. Mol Cell Biol. 1995;15:6746–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez-Berzal J, Castellano E, Martin-Encabo S, Gutierrez-Cianca N, Hernandez JM, Santos E, et al. Characterization of p87C3G, a novel, truncated C3G isoform that is overexpressed in chronic myeloid leukemia and interacts with Bcr-Abl. Exp Cell Res. 2006;312:938–48.

    Article  CAS  PubMed  Google Scholar 

  • Hirata T, Nagai H, Koizumi K, Okino K, Harada A, Onda M, et al. Amplification, up-regulation and over-expression of C3G (CRK SH3 domain-binding guanine nucleotide-releasing factor) in non-small cell lung cancers. J Hum Genet. 2004;49:290–5.

    Article  CAS  PubMed  Google Scholar 

  • Hong KW, Jin HS, Lim JE, Ryu HJ, Go MJ, Lee JY, et al. RAPGEF1 gene variants associated with type 2 diabetes in the Korean population. Diabetes Res Clin Pract. 2009;84:117–22.

    Article  CAS  PubMed  Google Scholar 

  • Ichiba T, Hashimoto Y, Nakaya M, Kuraishi Y, Tanaka S, Kurata T, et al. Activation of C3G guanine nucleotide exchange factor for Rap1 by phosphorylation of tyrosine 504. J Biol Chem. 1999;274:14376–81.

    Article  CAS  PubMed  Google Scholar 

  • Kao S, Jaiswal RK, Kolch W, Landreth GE. Identification of the mechanisms regulating the differential activation of the mapk cascade by epidermal growth factor and nerve growth factor in PC12 cells. J Biol Chem. 2001;276:18169–77.

    Article  CAS  PubMed  Google Scholar 

  • Knudsen BS, Feller SM, Hanafusa H. Four proline-rich sequences of the guanine-nucleotide exchange factor C3G bind with unique specificity to the first Src homology 3 domain of Crk. J Biol Chem. 1994;269:32781–7.

    CAS  PubMed  Google Scholar 

  • Lebrun AH, Moll-Khosrawi P, Pohl S, Makrypidi G, Storch S, Kilian D, et al. Analysis of potential biomarkers and modifier genes affecting the clinical course of CLN3 disease. Mol Med. 2011;17:1253–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra A, Radha V. F-actin-binding domain of c-Abl regulates localized phosphorylation of C3G: role of C3G in c-Abl-mediated cell death. Oncogene. 2010;29:4528–42.

    Article  CAS  PubMed  Google Scholar 

  • Mitra A, Kalayarasan S, Gupta V, Radha V. TC-PTP dephosphorylates the guanine nucleotide exchange factor C3G (RapGEF1) and negatively regulates differentiation of human neuroblastoma cells. PLoS One. 2011;6:e23681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolz JC, Nacusi LP, Segovis CM, Medeiros RB, Mitchell JS, Shimizu Y, et al. The WAVE2 complex regulates T cell receptor signaling to integrins via Abl- and CrkL-C3G-mediated activation of Rap1. J Cell Biol. 2008;182:1231–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nosaka Y, Arai A, Miyasaka N, Miura O. CrkL mediates Ras-dependent activation of the Raf/ERK pathway through the guanine nucleotide exchange factor C3G in hematopoietic cells stimulated with erythropoietin or interleukin-3. J Biol Chem. 1999;274:30154–62.

    Article  CAS  PubMed  Google Scholar 

  • Oh J, Seo DW, Diaz T, Wei B, Ward Y, Ray JM, et al. Tissue inhibitors of metalloproteinase 2 inhibits endothelial cell migration through increased expression of RECK. Cancer Res. 2004;64:9062–9.

    Article  CAS  PubMed  Google Scholar 

  • Ohba Y, Ikuta K, Ogura A, Matsuda J, Mochizuki N, Nagashima K, et al. Requirement for C3G-dependent Rap1 activation for cell adhesion and embryogenesis. EMBO J. 2001;20:3333–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okino K, Nagai H, Nakayama H, Doi D, Yoneyama K, Konishi H, et al. Inactivation of Crk SH3 domain-binding guanine nucleotide-releasing factor (C3G) in cervical squamous cell carcinoma. Int J Gynecol Cancer. 2006;16:763–71.

    Article  CAS  PubMed  Google Scholar 

  • Parker JD, Shen Y, Pleasance E, Li Y, Schein JE, Zhao Y, et al. Molecular etiology of an indolent lymphoproliferative disorder determined by whole-genome sequencing. Cold Spring Harb Mol Case Stud. 2016;2:a000679.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peak JC, Jones NP, Hobbs S, Katan M, Eccles SA. Phospholipase C gamma 1 regulates the Rap GEF1-Rap1 signalling axis in the control of human prostate carcinoma cell adhesion. Oncogene. 2008;27:2823–32.

    Article  CAS  PubMed  Google Scholar 

  • Radha V, Mitra A, Dayma K, Sasikumar K. Signalling to actin: role of C3G, a multitasking guanine-nucleotide-exchange factor. Biosci Rep. 2011;31:231–44.

    Article  CAS  PubMed  Google Scholar 

  • Rufanova VA, Lianos E, Alexanian A, Sorokina E, Sharma M, McGinty A, et al. C3G overexpression in glomerular epithelial cells during anti-GBM-induced glomerulonephritis. Kidney Int. 2009;75:31–40.

    Article  CAS  PubMed  Google Scholar 

  • Sakakibara A, Ohba Y, Kurokawa K, Matsuda M, Hattori S. Novel function of Chat in controlling cell adhesion via Cas-Crk-C3G-pathway-mediated Rap1 activation. J Cell Sci. 2002;115:4915–24.

    Article  CAS  PubMed  Google Scholar 

  • Sakkab D, Lewitzky M, Posern G, Schaeper U, Sachs M, Birchmeier W, et al. Signaling of hepatocyte growth factor/scatter factor (HGF) to the small GTPase Rap1 via the large docking protein Gab1 and the adapter protein CRKL. J Biol Chem. 2000;275:10772–8.

    Article  CAS  PubMed  Google Scholar 

  • Samuelsson J, Alonso S, Ruiz-Larroya T, Cheung TH, Wong YF, Perucho M. Frequent somatic demethylation of RAPGEF1/C3G intronic sequences in gastrointestinal and gynecological cancer. Int J Oncol. 2011;38:1575–7.

    CAS  PubMed  Google Scholar 

  • Sasi Kumar K, Ramadhas A, Nayak SC, Kaniyappan S, Dayma K, Radha V. C3G (RapGEF1), a regulator of actin dynamics promotes survival and myogenic differentiation of mouse mesenchymal cells. Biochim Biophys Acta. 2015;1853:2629–39.

    Article  CAS  PubMed  Google Scholar 

  • Schonherr C, Yang HL, Vigny M, Palmer RH, Hallberg B. Anaplastic lymphoma kinase activates the small GTPase Rap1 via the Rap1-specific GEF C3G in both neuroblastoma and PC12 cells. Oncogene. 2010;29:2817–30.

    Article  CAS  PubMed  Google Scholar 

  • Sekine K, Kawauchi T, Kubo K, Honda T, Herz J, Hattori M, et al. Reelin controls neuronal positioning by promoting cell-matrix adhesion via inside-out activation of integrin alpha5beta1. Neuron. 2012;76:353–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah B, Lutter D, Bochenek ML, Kato K, Tsytsyura Y, Glyvuk N, et al. C3G/Rapgef1 is required in multipolar neurons for the transition to a bipolar morphology during cortical development. PLoS One. 2016;11:e0154174.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shirinian M, Popovic M, Grabbe C, Varshney G, Hugosson F, Bos H, et al. The Rap1 guanine nucleotide exchange factor C3G is required for preservation of larval muscle integrity in Drosophila melanogaster. PLoS One. 2010;5:e9403.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka S, Morishita T, Hashimoto Y, Hattori S, Nakamura S, Shibuya M, et al. C3G, a guanine nucleotide-releasing protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2/ASH proteins. Proc Natl Acad Sci USA. 1994;91:3443–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka S, Ouchi T, Hanafusa H. Downstream of Crk adaptor signaling pathway: activation of Jun kinase by v-Crk through the guanine nucleotide exchange protein C3G. Proc Natl Acad Sci USA. 1997;94:2356–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukamoto N, Hattori M, Yang H, Bos JL, Minato N. Rap1 GTPase-activating protein SPA-1 negatively regulates cell adhesion. J Biol Chem. 1999;274:18463–9.

    Article  CAS  PubMed  Google Scholar 

  • Utreras E, Henriquez D, Contreras-Vallejos E, Olmos C, Di Genova A, Maass A, et al. Cdk5 regulates Rap1 activity. Neurochem Int. 2013;62:848–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voss AK, Gruss P, Thomas T. The guanine nucleotide exchange factor C3G is necessary for the formation of focal adhesions and vascular maturation. Development. 2003;130:355–67.

    Article  CAS  PubMed  Google Scholar 

  • Voss AK, Krebs DL, Thomas T. C3G regulates the size of the cerebral cortex neural precursor population. EMBO J. 2006;25:3652–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voss AK, Britto JM, Dixon MP, Sheikh BN, Collin C, Tan SS, et al. C3G regulates cortical neuron migration, preplate splitting and radial glial cell attachment. Development. 2008;135:2139–49.

    Article  CAS  PubMed  Google Scholar 

  • Wang SF, Aoki M, Nakashima Y, Shinozuka Y, Tanaka H, Taniwaki M, et al. Development of Notch-dependent T-cell leukemia by deregulated Rap1 signaling. Blood. 2008;111:2878–86.

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Lai CF, Mobley WC. Nerve growth factor activates persistent Rap1 signaling in endosomes. J Neurosci Off J Soc Neurosci. 2001;21:5406–16.

    CAS  Google Scholar 

  • Yang JJ, Cho LY, Ma SH, Ko KP, Shin A, Choi BY, et al. Oncogenic CagA promotes gastric cancer risk via activating ERK signaling pathways: a nested case-control study. PLoS One. 2011;6:e21155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yip YP, Thomas T, Voss AK, Yip JW. Migration of sympathetic preganglionic neurons in the spinal cord of a C3G deficient mouse suggests that C3G acts in the reelin signaling pathway. J Comp Neurol. 2012;520:3194–202.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vegesna Radha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this entry

Cite this entry

Dayma, K., Radha, V. (2016). C3G. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6438-9_101544-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6438-9_101544-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6438-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics