Encyclopedia of Signaling Molecules

Living Edition
| Editors: Sangdun Choi

Phosphatidylinositol 4-Kinase (PI4K2B)

  • Ganiyu Alli-Balogun
  • Shane Minogue
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6438-9_101524-1

Synonyms

Historical Background

Phosphatidylinositol kinase activity was initially defined by Mitchell and colleagues as one that could transfer the γ-phosphoryl group of 32P-labeled ATP to phosphatidylinositol in membrane fractions derived from tissues (Michell et al. 1967). Two decades later, studies involving the use of cell and tissue extracts revealed that phosphatidylinositol kinase activity could be separated into three distinct types based on sensitivity to inhibitors and migration in a sucrose gradient (Whitman et al. 1987). These were described as the type I, II, and III phosphatidylinositol kinases. The type I enzyme was later found to phosphorylate the D3 position of the myo-inositol moiety of phosphatidylinositol and is now referred to as phosphatidylinositol 3-kinase (PI3K). The type II and III enzymes phosphorylate the D4 position but exhibit different biochemical characteristics such as sensitivities to inhibitors and migration in a sucrose gradient. The...

Keywords

Growth Factor Activation Cellular Role Cytoplasmic Pool Phagosome Maturation Phosphatidylinositol Kinase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Aytes A, et al. PI4K2β and STIM2 are two new relevant genes for colorectal cancer. Cancer Research. 2008;68(9 Supplement):LB–169. Available at: http://cancerres.aacrjournals.org/content/68/9_Supplement/LB-169.abstract Google Scholar
  2. Balla A, Balla T. Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends in cell biology. 2006;16(7):351–61. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16793271. Accessed 1 Oct 2014.CrossRefPubMedGoogle Scholar
  3. Barylko B, et al. A novel family of phosphatidylinositol 4-kinases conserved from yeast to humans. The Journal of biological chemistry. 2001;276(11):7705–8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11244087. Accessed 23 Oct 2014.CrossRefPubMedGoogle Scholar
  4. Barylko B, et al. Palmitoylation controls the catalytic activity and subcellular distribution of phosphatidylinositol 4-kinase II{alpha}. J Biol Chem. 2009;284(15):9994–10003. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2665123&tool=pmcentrez&rendertype=abstract. Accessed 23 Oct 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baumlova A, et al. The crystal structure of the phosphatidylinositol 4-kinase IIa. EMBO Rep. 2014;15(10):1085–93.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Griffioen M, et al. Identification of phosphatidylinositol 4-kinase type II beta as HLA class II-restricted target in graft versus leukemia reactivity. Proc Natl Acad Sci USA. 2008;105(10):3837–42.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Jeschke A, et al. Phosphatidylinositol 4-phosphate and phosphatidylinositol 3-phosphate regulate phagolysosome biogenesis. Proc Natl Acad Sci. 2015;112(15):201423456. Available at: http://www.pnas.org/content/early/2015/03/26/1423456112.full.pdf.CrossRefGoogle Scholar
  8. Jung G, et al. Stabilization of phosphatidylinositol 4-kinase type IIbeta by interaction with Hsp90. J Biol Chem. 2011;286(14):12775–84. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3069477&tool=pmcentrez&rendertype=abstract. Accessed 18 Jan 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Klima M, et al. The high-resolution crystal structure of phosphatidylinositol 4-kinase II b and the crystal structure of phosphatidylinositol 4-kinase II a containing a nucleoside analogue provide a structural basis for isoform-specific inhibitor design research papers. Acta Cryst. 2015;D71:1555–63.Google Scholar
  10. Mazzocca A, Liotta F, Carloni V. Tetraspanin CD81-regulated cell motility plays a critical role in intrahepatic metastasis of hepatocellular carcinoma. Gastroenterology. 2008;135(1):244–256.e1. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18466772. Accessed 24 Mar 2014.CrossRefPubMedGoogle Scholar
  11. Michell RH, et al. Characteristics of rat liver phosphatidylinositol kinase and its presence in the plasma membrane. Biochimica et biophysica acta. 1967;144(BBA 55388):649–58.CrossRefPubMedGoogle Scholar
  12. Moon RT. Wnt/beta-catenin pathway. Sci STKE. 2005;2005(271):cm1. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15713948. Accessed 12 Oct 2014.PubMedGoogle Scholar
  13. Sinha RK, et al. Type II phosphatidylinositol 4-kinase β is an integral signaling component of early T cell activation mechanisms. Biochimie. 2013;95(8):1560–6. Available at: http://dx.doi.org/10.1016/j.biochi.2013.04.005 CrossRefPubMedGoogle Scholar
  14. Wei YJ, et al. Type II phosphatidylinositol 4-kinase beta is a cytosolic and peripheral membrane protein that is recruited to the plasma membrane and activated by Rac-GTP. The Journal of biological chemistry. 2002;277(48):46586–93. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12324459. Accessed 17 July 2014.CrossRefPubMedGoogle Scholar
  15. Whitman M, et al. Evidence for two distinct phosphatidylinositol kinases fibroblasts Implications for cellular regulation. Biochem J. 1987;247:165–74.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Wieffer M, et al. PI4K2β/AP-1-based TGN-endosomal sorting regulates Wnt signaling. Curr Biol. 2013;23(21):2185–90. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0960982213011330. Accessed 6 Nov 2013.CrossRefPubMedGoogle Scholar
  17. Yoo SH, et al. Localization and projected role of phosphatidylinositol 4-kinases IIα and IIβ in inositol 1,4,5-trisphosphate-sensitive nucleoplasmic Ca2+ store vesicles. Nucleus. 2014;5(4):341–51. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4152348&tool=pmcentrez&rendertype=abstract CrossRefPubMedPubMedCentralGoogle Scholar
  18. Zheng H-T, et al. Are there tumor suppressor genes on chromosome 4p in sporadic colorectal carcinoma? World J Gastroenterol. 2008;14(1):90–4.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Zhou Q, et al. Molecular insights into the membrane-associated phosphatidylinositol 4-kinase II alpha. Nat Commun. 2014;5:3552. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3974213&tool=pmcentrez&rendertype=abstract. Accessed 8 Nov 2014.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2016

Authors and Affiliations

  1. 1.Lipid and Membrane Biology Group, UCL Institute for Liver and Digestive Health, Division of MedicineUniversity College LondonLondonUK