Molecular Life Sciences

Living Edition
| Editors: Robert D. Wells, Judith S. Bond, Judith Klinman, Bettie Sue Siler Masters, Ellis Bell

Some Key Enzymes Used in Cloning

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6436-5_89-1

Synopsis

A large number of different enzymes are used in DNA cloning procedures. DNA ligase is used to join two DNA molecules covalently, the key step in constructing a recombinant plasmid from a cloning vector and a DNA insert. The ends of DNA molecules can be modified to allow or prevent ligation by using the enzymes polynucleotide kinase or alkaline phosphatase. Enzymes that catalyze DNA synthesis, including DNA polymerases, reverse transcriptase, and terminal deoxynucleotidyl transferase, find application in many ways in cloning procedures, including to modify DNA ends to control ligation, in the polymerase chain reaction, in DNA sequencing, to produce DNA copies of RNA molecules, and other applications. A variety of nucleases are available that can be used to remove unwanted DNA, to modify DNA ends, and to delete larger portions of a DNA molecule.

Introduction

The isolation, modification, and joining of specific DNA fragments to produce recombinant products are essential steps in...

Keywords

Terminal Deoxynucleotidyl Transferase Phosphoryl Group Exonuclease Activity Phosphodiester Bond Klenow Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Berg P, Mertz JE (2010) Personal reflections on the origins and emergence of recombinant DNA technology. Genetics 184:9–17PubMedCentralCrossRefPubMedGoogle Scholar
  2. Blanco L, Bernad A, Lazaro JM, Martin G, Garmendia C, Salas M (1989) Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J Biol Chem 264:8935–8940PubMedGoogle Scholar
  3. Chen CY (2014) DNA polymerases drive DNA sequencing-by-synthesis technologies: both past and present. Front Microbiol 5:305PubMedCentralPubMedGoogle Scholar
  4. Cobianchi F, Wilson SH (1987) Enzymes for modifying and labeling DNA and RNA. Methods Enzymol 152:94–110CrossRefPubMedGoogle Scholar
  5. Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J et al (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A 99:5261–5266PubMedCentralCrossRefPubMedGoogle Scholar
  6. Dickson K, Burns C, Richardson J (2000) Determination of the free-energy change for repair of a DNA phosphodiester bond. J Biol Chem 275:15828–15831CrossRefPubMedGoogle Scholar
  7. Dillingham MS, Kowalczykowski SC (2008) RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol. Mol. Biol. Rev. 72:642–671PubMedCentralCrossRefPubMedGoogle Scholar
  8. Dugaiczyk A, Boyer HW, Goodman HM (1975) Ligation of EcoRI endonuclease-generated DNA fragments into linear and circular structures. J Mol Biol 96:171–184CrossRefPubMedGoogle Scholar
  9. Kornberg A, Baker TA (1992) DNA replication, 2nd edn. W. H. Freeman, New YorkGoogle Scholar
  10. Kunkel T (2004) DNA replication fidelity. J Biol Chem 279:16895–16898CrossRefPubMedGoogle Scholar
  11. Langhorst BW, Jack WE, Reha-Krantz L, Nichols NM (2012) Polbase: a repository of biochemical, genetic and structural information about DNA polymerases. Nucleic Acids Res 40:D381–D387PubMedCentralCrossRefPubMedGoogle Scholar
  12. Linn SM, Lloyd RS, Roberts RJ (eds) (1993) Nucleases. Cold Spring Harbor Laboratory Press, Plainview, NYGoogle Scholar
  13. Motea EA, Berdis AJ (2010) Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase. Biochim Biophys Acta 1804:1151–1166PubMedCentralCrossRefPubMedGoogle Scholar
  14. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350CrossRefPubMedGoogle Scholar
  15. Nichols NM (2011) Endonucleases. In Current Protocols in Molecular Biology. WileyGoogle Scholar
  16. Nilsen I, Øverbø K, Olsen R (2001) Thermolabile alkaline phosphatase from Northern shrimp (Pandalus borealis): protein and cDNA sequence analyses. Comp Biochem Physiol B Biochem Mol Biol 129:853–861CrossRefPubMedGoogle Scholar
  17. Patel P, Suzuki M, Adman E, Shinkai A, Loeb L (2001) Prokaryotic DNA polymerase I: evolution, structure, and “base flipping” mechanism for nucleotide selection. J Mol Biol 308:823–837CrossRefPubMedGoogle Scholar
  18. Pavlov AR, Pavlova NV, Kozyavkin SA, Slesarev AI (2004) Recent developments in the optimization of thermostable DNA polymerases for efficient applications. Trends Biotechnol 22:253–260CrossRefPubMedGoogle Scholar
  19. Revie D, Smith DW, Yee TW (1988) Kinetic analysis for optimization of DNA ligation reactions. Nucleic Acids Res 16:10301–10321PubMedCentralCrossRefPubMedGoogle Scholar
  20. Rina M, Pozidis C, Mavromatis K, Tzanodaskalaki M, Kokkinidis M, Bouriotis V (2000) Alkaline phosphatase from the Antarctic strain TAB5. Properties and psychrophilic adaptations. Eur J Biochem 267:1230–1238CrossRefPubMedGoogle Scholar
  21. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354CrossRefPubMedGoogle Scholar
  22. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491CrossRefPubMedGoogle Scholar
  23. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  24. Shore D, Langowski J, Baldwin RL (1981) DNA flexibility studied by covalent closure of short fragments into circles. Proc Natl Acad Sci U S A 78:4833–4837PubMedCentralCrossRefPubMedGoogle Scholar
  25. Telesnitsky A, Goff SP (1997) Reverse transcriptase and the generation of retroviral DNA. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Plainview, pp 121–160Google Scholar
  26. Tomkinson AE, Vijayakumar S, Pascal JM, Ellenberger T (2006) DNA ligases: structure, reaction mechanism, and function. Chem Rev 106:687–699CrossRefPubMedGoogle Scholar
  27. Wang LK, Lima CD, Shuman S (2002) Structure and mechanism of T4 polynucleotide kinase: an RNA repair enzyme. Embo J 21:3873–3880PubMedCentralCrossRefPubMedGoogle Scholar
  28. Wood Z, Sabatini R, Hajduk S (2004) RNA ligase: picking up the pieces. Mol Cell 13:455–456CrossRefPubMedGoogle Scholar
  29. Yang W (2011) Nucleases: diversity of structure, function and mechanism. Q Rev Biophys 44:1–93CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkUSA