Skip to main content

Regulation of DSB Repair by Cell Cycle Signaling and the DNA Damage Response

  • Living reference work entry
  • First Online:
Book cover Molecular Life Sciences

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahnesorg P, Jackson SP (2007) The non-homologous end-joining protein Nej1p is a target of the DNA damage checkpoint. DNA Repair (Amst) 6:190–201

    Article  CAS  Google Scholar 

  • Altmannova V, Eckert-Boulet N, Arneric M, Kolesar P, Chaloupkova R, Damborsky J, Sung P, Zhao X, Lisby M, Krejci L (2010) Rad52 SUMOylation affects the efficiency of the DNA repair. Nucleic Acids Res 38:4708–4721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ammazzalorso F, Pirzio LM, Bignami M, Franchitto A, Pichierri P (2010) ATR and ATM differently regulate WRN to prevent DSBs at stalled replication forks and promote replication fork recovery. EMBO J 29:3156–3169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anantha RW, Vassin VM, Borowiec JA (2007) Sequential and synergistic modification of human RPA stimulates chromosomal DNA repair. J Biol Chem 282:35910–35923

    Article  CAS  PubMed  Google Scholar 

  • Antunez de Mayolo A, Lisby M, Erdeniz N, Thybo T, Mortensen UH, Rothstein R (2006) Multiple start codons and phosphorylation result in discrete Rad52 protein species. Nucleic Acids Res 34:2587–2597

    Article  CAS  PubMed  Google Scholar 

  • Aparicio T, Baer R, Gautier J (2014) DNA double-strand break repair pathway choice and cancer. DNA Repair (Amst) 19:169–175

    Google Scholar 

  • Bahassi EM, Ovesen JL, Riesenberg AL, Bernstein WZ, Hasty PE, Stambrook PJ (2008) The checkpoint kinases Chk1 and Chk2 regulate the functional associations between hBRCA2 and Rad51 in response to DNA damage. Oncogene 27:3977–3985

    Article  CAS  PubMed  Google Scholar 

  • Balakrishnan L, Stewart J, Polaczek P, Campbell JL, Bambara RA (2010) Acetylation of Dna2 endonuclease/helicase and flap endonuclease 1 by p300 promotes DNA stability by creating long flap intermediates. J Biol Chem 285:4398–4404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baroni E, Viscardi V, Cartagena-Lirola H, Lucchini G, Longhese MP (2004) The functions of budding yeast Sae2 in the DNA damage response require Mec1- and Tel1-dependent phosphorylation. Mol Cell Biol 24:4151–4165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bayart E, Dutertre S, Jaulin C, Guo RB, Xi XG, Amor-Gueret M (2006) The Bloom syndrome helicase is a substrate of the mitotic Cdc2 kinase. Cell Cycle 5:1681–1686

    Article  CAS  PubMed  Google Scholar 

  • Blanco MG, Matos J, West SC (2014) Dual control of yen1 nuclease activity and cellular localization by cdk and cdc14 prevents genome instability. Mol Cell 54:94–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blander G, Zalle N, Daniely Y, Taplick J, Gray MD, Oren M (2002) DNA damage-induced translocation of the Werner helicase is regulated by acetylation. J Biol Chem 277:50934–50940

    Article  CAS  PubMed  Google Scholar 

  • Branzei D, Sollier J, Liberi G, Zhao X, Maeda D, Seki M, Enomoto T, Ohta K, Foiani M (2006) Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 127:509–522

    Article  CAS  PubMed  Google Scholar 

  • Bruderer R, Tatham MH, Plechanovova A, Matic I, Garg AK, Hay RT (2011) Purification and identification of endogenous polySUMO conjugates. EMBO Rep 12:142–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Callen E, Di Virgilio M, Kruhlak MJ, Nieto-Soler M, Wong N, Chen HT, Faryabi RB, Polato F, Santos M, Starnes LM et al (2013) 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions. Cell 153:1266–1280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cartagena-Lirola H, Guerini I, Viscardi V, Lucchini G, Longhese MP (2006) Budding Yeast Sae2 is an In Vivo Target of the Mec1 and Tel1 Checkpoint Kinases During Meiosis. Cell Cycle 5:1549–1559

    Article  CAS  PubMed  Google Scholar 

  • Chan DW, Ye R, Veillette CJ, Lees-Miller SP (1999) DNA-dependent protein kinase phosphorylation sites in Ku 70/80 heterodimer. Biochemistry 38:1819–1828

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Niu H, Chung WH, Zhu Z, Papusha A, Shim EY, Lee SE, Sung P, Ira G (2011) 11. Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation. Nat Struct Mol Biol 18:1015–1019

    Article  PubMed Central  PubMed  Google Scholar 

  • Chapman JR, Taylor MR, Boulton SJ (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47:497–510

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Lisby M, Symington LS (2013) RPA coordinates DNA end resection and prevents formation of DNA hairpins. Mol Cell 50:589–600

    Article  CAS  PubMed  Google Scholar 

  • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840

    Article  CAS  PubMed  Google Scholar 

  • Conilleau S, Takizawa Y, Tachiwana H, Fleury F, Kurumizaka H, Takahashi M (2004) Location of tyrosine 315, a target for phosphorylation by cAbl tyrosine kinase, at the edge of the subunit-subunit interface of the human Rad51 filament. J Mol Biol 339:797–804

    Article  CAS  PubMed  Google Scholar 

  • Cortez D, Wang Y, Qin J, Elledge SJ (1999) Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286:1162–1166

    Article  CAS  PubMed  Google Scholar 

  • D’Amours D, Jackson SP (2001) The yeast Xrs2 complex functions in S phase checkpoint regulation. Genes Dev 15:2238–2249

    Article  PubMed Central  PubMed  Google Scholar 

  • Davies SL, North PS, Dart A, Lakin ND, Hickson ID (2004) Phosphorylation of the Bloom's syndrome helicase and its role in recovery from S-phase arrest. Mol Cell Biol 24:1279–1291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Donnianni RA, Ferrari M, Lazzaro F, Clerici M, Tamilselvan Nachimuthu B, Plevani P, Muzi-Falconi M, Pellicioli A (2010) Elevated levels of the polo kinase Cdc5 override the Mec1/ATR checkpoint in budding yeast by acting at different steps of the signaling pathway. PLoS Genet 6:e1000763

    Article  PubMed Central  PubMed  Google Scholar 

  • Dou H, Huang C, Singh M, Carpenter PB, Yeh ET (2010) Regulation of DNA repair through deSUMOylation and SUMOylation of replication protein A complex. Mol Cell 39:333–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eissler CL, Mazon G, Powers BL, Savinov SN, Symington LS, Hall MC (2014) The cdk/cdc14 module controls activation of the yen1 holliday junction resolvase to promote genome stability. Mol Cell 54:80–93

    Article  CAS  PubMed  Google Scholar 

  • El-Shemerly M, Hess D, Pyakurel AK, Moselhy S, Ferrari S (2008) ATR-dependent pathways control hEXO1 stability in response to stalled forks. Nucleic Acids Res 36:511–519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eladad S, Ye TZ, Hu P, Leversha M, Beresten S, Matunis MJ, Ellis NA (2005) Intra-nuclear trafficking of the BLM helicase to DNA damage-induced foci is regulated by SUMO modification. Hum Mol Genet 14:1351–1365

    Article  CAS  PubMed  Google Scholar 

  • Esashi F, Christ N, Gannon J, Liu Y, Hunt T, Jasin M, West SC (2005) CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature 434:598–604

    Article  CAS  PubMed  Google Scholar 

  • Ferrari M, Nachimuthu BT, Donnianni RA, Klein H, Pellicioli A (2013) Tid1/Rdh54 translocase is phosphorylated through a Mec1- and Rad53-dependent manner in the presence of DSB lesions in budding yeast. DNA Repair (Amst) 12:347–355

    Article  CAS  Google Scholar 

  • Gama V, Yoshida T, Gomez JA, Basile DP, Mayo LD, Haas AL, Matsuyama S (2006) Involvement of the ubiquitin pathway in decreasing Ku70 levels in response to drug-induced apoptosis. Exp Cell Res 312:488–499

    Article  CAS  PubMed  Google Scholar 

  • Gatei M, Scott SP, Filippovitch I, Soronika N, Lavin MF, Weber B, Khanna KK (2000a) Role for ATM in DNA damage-induced phosphorylation of BRCA1. Cancer Res 60:3299–3304

    CAS  PubMed  Google Scholar 

  • Gatei M, Young D, Cerosaletti KM, Desai-Mehta A, Spring K, Kozlov S, Lavin MF, Gatti RA, Concannon P, Khanna K (2000b) ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nat Genet 25:115–119

    Article  CAS  PubMed  Google Scholar 

  • Herzberg K, Bashkirov VI, Rolfsmeier M, Haghnazari E, McDonald WH, Anderson S, Bashkirova EV, Yates JR 3rd, Heyer WD (2006) Phosphorylation of Rad55 on serines 2, 8, and 14 is required for efficient homologous recombination in the recovery of stalled replication forks. Mol Cell Biol 26:8396–8409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heyer WD, Ehmsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huertas P, Jackson SP (2009) Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J Biol Chem 284:9558–9565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ira G, Pellicioli A, Balijja A, Wang X, Fiorani S, Carotenuto W, Liberi G, Bressan D, Wan L, Hollingsworth NM et al (2004) DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431:1011–1017

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Boddy MN, Russell P, Wang TS (2005) Replication checkpoint kinase Cds1 regulates Mus81 to preserve genome integrity during replication stress. Genes Dev 19:919–932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaidi A, Weinert BT, Choudhary C, Jackson SP (2010) Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 329:1348–1353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawabe Y, Seki M, Seki T, Wang WS, Imamura O, Furuichi Y, Saitoh H, Enomoto T (2000) Covalent modification of the Werner's syndrome gene product with the ubiquitin-related protein, SUMO-1. J Biol Chem 275:20963–20966

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Brill SJ (2003) MEC1-dependent phosphorylation of yeast RPA1 in vitro. DNA Repair (Amst) 2:1321–1335

    Article  CAS  Google Scholar 

  • Kitao H, Yuan ZM (2002) Regulation of ionizing radiation-induced Rad52 nuclear foci formation by c-Abl-mediated phosphorylation. J Biol Chem 277:48944–48948

    Article  CAS  PubMed  Google Scholar 

  • Lazzaro F, Giannattasio M, Puddu F, Granata M, Pellicioli A, Plevani P, Muzi-Falconi M (2009) Checkpoint mechanisms at the intersection between DNA damage and repair. DNA Repair (Amst) 8:1055–1067

    Article  CAS  Google Scholar 

  • Lee JS, Collins KM, Brown AL, Lee CH, Chung JH (2000) hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404:201–204

    Article  CAS  PubMed  Google Scholar 

  • Lee KJ, Jovanovic M, Udayakumar D, Bladen CL, Dynan WS (2004) Identification of DNA-PKcs phosphorylation sites in XRCC4 and effects of mutations at these sites on DNA end joining in a cell-free system. DNA Repair (Amst) 3:267–276

    Article  CAS  Google Scholar 

  • Lee DH, Acharya SS, Kwon M, Drane P, Guan Y, Adelmant G, Kalev P, Shah J, Pellman D, Marto JA et al (2014) Dephosphorylation enables the recruitment of 53BP1 to double-strand DNA breaks. Mol Cell 54:512–525

    Article  CAS  PubMed  Google Scholar 

  • Li K, Wang R, Lozada E, Fan W, Orren DK, Luo J (2010) Acetylation of WRN protein regulates its stability by inhibiting ubiquitination. PLoS One 5:e10341

    Article  PubMed Central  PubMed  Google Scholar 

  • Lim DS, Kim ST, Xu B, Maser RS, Lin J, Petrini JH, Kastan MB (2000) ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404:613–617

    Article  CAS  PubMed  Google Scholar 

  • Lloyd J, Chapman JR, Clapperton JA, Haire LF, Hartsuiker E, Li J, Carr AM, Jackson SP, Smerdon SJ (2009) A supramodular FHA/BRCT-repeat architecture mediates Nbs1 adaptor function in response to DNA damage. Cell 139:100–111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma Y, Pannicke U, Lu H, Niewolik D, Schwarz K, Lieber MR (2005) The DNA-dependent protein kinase catalytic subunit phosphorylation sites in human Artemis. J Biol Chem 280:33839–33846

    Article  CAS  PubMed  Google Scholar 

  • Mimitou EP, Symington LS (2009) DNA end resection: many nucleases make light work. DNA Repair (Amst) 8:983–995

    Article  CAS  Google Scholar 

  • Morin I, Ngo HP, Greenall A, Zubko MK, Morrice N, Lydall D (2008) Checkpoint-dependent phosphorylation of Exo1 modulates the DNA damage response. EMBO J 27:2400–2410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muftuoglu M, Kusumoto R, Speina E, Beck G, Cheng WH, Bohr VA (2008) Acetylation regulates WRN catalytic activities and affects base excision DNA repair. PLoS One 3:e1918

    Article  PubMed Central  PubMed  Google Scholar 

  • Muller-Tidow C, Ji P, Diederichs S, Potratz J, Baumer N, Kohler G, Cauvet T, Choudary C, van der Meer T, Chan WY et al (2004) The cyclin A1-CDK2 complex regulates DNA double-strand break repair. Mol Cell Biol 24:8917–8928

    Article  PubMed Central  PubMed  Google Scholar 

  • Niu H, Wan L, Busygina V, Kwon Y, Allen JA, Li X, Kunz RC, Kubota K, Wang B, Sung P et al (2009) Regulation of meiotic recombination via Mek1-mediated Rad54 phosphorylation. Mol Cell 36:393–404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohouo PY, Bastos de Oliveira FM, Almeida BS, Smolka MB (2010) DNA damage signaling recruits the Rtt107-Slx4 scaffolds via Dpb11 to mediate replication stress response. Mol Cell 39:300–306

    Article  CAS  PubMed  Google Scholar 

  • Ohouo PY, Bastos de Oliveira FM, Liu Y, Ma CJ, Smolka MB (2013) DNA-repair scaffolds dampen checkpoint signalling by counteracting the adaptor Rad9. Nature 493:120–124

    Article  PubMed Central  PubMed  Google Scholar 

  • Ouyang KJ, Woo LL, Zhu J, Huo D, Matunis MJ, Ellis NA (2009) SUMO modification regulates BLM and RAD51 interaction at damaged replication forks. PLoS Biol 7:e1000252

    Article  PubMed Central  PubMed  Google Scholar 

  • Panier S, Boulton SJ (2014) Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol 15:7–18

    Article  CAS  PubMed  Google Scholar 

  • Pellicioli A, Lee SE, Lucca C, Foiani M, Haber JE (2001) Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. Mol Cell 7:293–300

    Article  CAS  PubMed  Google Scholar 

  • Postow L, Ghenoiu C, Woo EM, Krutchinsky AN, Chait BT, Funabiki H (2008) Ku80 removal from DNA through double strand break-induced ubiquitylation. J Cell Biol 182:467–479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riballo E, Kuhne M, Rief N, Doherty A, Smith GC, Recio MJ, Reis C, Dahm K, Fricke A, Krempler A et al (2004) A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol Cell 16:715–724

    Article  CAS  PubMed  Google Scholar 

  • Robert T, Vanoli F, Chiolo I, Shubassi G, Bernstein KA, Rothstein R, Botrugno OA, Parazzoli D, Oldani A, Minucci S et al (2011) HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 471:74–79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sacher M, Pfander B, Hoege C, Jentsch S (2006) Control of Rad52 recombination activity by double-strand break-induced SUMO modification. Nat Cell Biol 8:1284–1290

    Article  CAS  PubMed  Google Scholar 

  • Saponaro M, Callahan D, Zheng X, Krejci L, Haber JE, Klein HL, Liberi G (2010) Cdk1 targets Srs2 to complete synthesis-dependent strand annealing and to promote recombinational repair. PLoS Genet 6:e1000858

    Article  PubMed Central  PubMed  Google Scholar 

  • Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, Bartek J, Baer R, Lukas J, Jackson SP (2007) Human CtIP promotes DNA end resection. Nature 450:509–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwartz EK, Heyer WD (2011) Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes. Chromosoma 120:109–127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sorensen CS, Hansen LT, Dziegielewski J, Syljuasen RG, Lundin C, Bartek J, Helleday T (2005) The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol 7:195–201

    Article  CAS  PubMed  Google Scholar 

  • Terasawa M, Ogawa T, Tsukamoto Y, Ogawa H (2008) Sae2p phosphorylation is crucial for cooperation with Mre11p for resection of DNA double-strand break ends during meiotic recombination in Saccharomyces cerevisiae. Genes Genet Syst 83:209–217

    Article  CAS  PubMed  Google Scholar 

  • Tibbetts RS, Cortez D, Brumbaugh KM, Scully R, Livingston D, Elledge SJ, Abraham RT (2000) Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev 14:2989–3002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Toh GW, Sugawara N, Dong J, Toth R, Lee SE, Haber JE, Rouse J (2010) Mec1/Tel1-dependent phosphorylation of Slx4 stimulates Rad1-Rad10-dependent cleavage of non-homologous DNA tails. DNA Repair (Amst) 9:718–726

    Article  CAS  Google Scholar 

  • Tougan T, Kasama T, Ohtaka A, Okuzaki D, Saito TT, Russell P, Nojima H (2010) The Mek1 phosphorylation cascade plays a role in meiotic recombination of Schizosaccharomyces pombe. Cell Cycle 9:4688–4702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ubersax JA, Woodbury EL, Quang PN, Paraz M, Blethrow JD, Shah K, Shokat KM, Morgan DO (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425:859–864

    Article  CAS  PubMed  Google Scholar 

  • Wang YG, Nnakwe C, Lane WS, Modesti M, Frank KM (2004) Phosphorylation and regulation of DNA ligase IV stability by DNA-dependent protein kinase. J Biol Chem 279:37282–37290

    Article  CAS  PubMed  Google Scholar 

  • Waters CA, Strande NT, Wyatt DW, Pryor JM, Ramsden DA (2014) Nonhomologous end joining: a good solution for bad ends. DNA Repair (Amst) 17:39–51

    Article  CAS  Google Scholar 

  • Williams RS, Dodson GE, Limbo O, Yamada Y, Williams JS, Guenther G, Classen S, Glover JN, Iwasaki H, Russell P et al (2009) Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell 139:87–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woods YL, Xirodimas DP, Prescott AR, Sparks A, Lane DP, Saville MK (2004) p14 Arf promotes small ubiquitin-like modifier conjugation of Werners helicase. J Biol Chem 279:50157–50166

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Ranganathan V, Weisman DS, Heine WF, Ciccone DN, O'Neill TB, Crick KE, Pierce KA, Lane WS, Rathbun G et al (2000) ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 405:477–482

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Fu S, Lai M, Baer R, Chen J (2006) BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP. Genes Dev 20:1721–1726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu Y, Mahaney BL, Yano K, Ye R, Fang S, Douglas P, Chen DJ, Lees-Miller SP (2008) DNA-PK and ATM phosphorylation sites in XLF/Cernunnos are not required for repair of DNA double strand breaks. DNA Repair (Amst) 7:1680–1692

    Article  CAS  Google Scholar 

  • Yurchenko V, Xue Z, Gama V, Matsuyama S, Sadofsky MJ (2008) Ku70 is stabilized by increased cellular SUMO. Biochem Biophys Res Commun 366:263–268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yurchenko V, Xue Z, Sadofsky MJ (2006) SUMO modification of human XRCC4 regulates its localization and function in DNA double-strand break repair. Mol Cell Biol 26:1786–1794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao S, Weng YC, Yuan SS, Lin YT, Hsu HC, Lin SC, Gerbino E, Song MH, Zdzienicka MZ, Gatti RA et al (2000) Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 405:473–477

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Federica Marini or Achille Pellicioli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Marini, F., Pellicioli, A. (2014). Regulation of DSB Repair by Cell Cycle Signaling and the DNA Damage Response. In: Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_76-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_76-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics