Molecular Life Sciences

Living Edition
| Editors: Robert D. Wells, Judith S. Bond, Judith Klinman, Bettie Sue Siler Masters, Ellis Bell

DNA Repair Polymerases

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6436-5_61-1

Synopsis

To cope with DNA damage, cellular organisms possess evolutionary conserved mechanisms to remove DNA lesions and restore the original genetic information. Most of these pathways require a resynthesis step during which the intact strand serves as a template in repairing the damaged one. Specialized enzymes called DNA polymerases catalyze this DNA synthesis. This review focuses on the role of the numerous prokaryotic and eukaryotic DNA polymerases identified to date in the major DNA repair pathways: base excision repair (BER), nucleotide excision repair (NER), double-strand break repair (DSBR), cross-link repair (CLR), and mismatch repair (MMR).

Introduction

The structure of DNA is constantly subjected to alteration from physical agents such as UV light and ionizing radiation or by chemicals found in the environment. In addition to the action of these exogenous agents, DNA is also damaged by a plethora of endogenous cellular metabolites such as those produced by hydrolysis,...

Keywords

Nucleotide Excision Repair Base Excision Repair Base Excision Repair Pathway NHEJ Factor Base Excision Repair Intermediate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

The authors wish to thank Prof Paul Boehmer for the critical reading of the manuscript. The authors deeply apologize to the too many colleagues they were unable to cite due to the space restriction.

References

  1. Braithwaite EK, Prasad RP, Shock DD et al (2005) DNA polymerase λ mediates a back-up base excision repair activity in extracts of mouse embryonic fibroblasts. J Biol Chem 280:18469–18475. doi:10.1074/jbc.M411864200PubMedCrossRefGoogle Scholar
  2. Dianov GL, Lindahl T (1994) Reconstitution of the DNA base excision-repair pathway. Curr Biol 4:1069–1076PubMedCrossRefGoogle Scholar
  3. Friedberg EC, Walker GC, Siede W et al (2005) DNA repair and mutagenesis, 2nd edn. ASM Press, Washington, DCGoogle Scholar
  4. Hanawalt PC, Cooper PK, Ganesan AK, Smith CA (1979) DNA repair in bacteria and mammalian cells. Annu Rev Biochem 48:783–836. doi:10.1146/annurev.bi.48.070179.004031PubMedCrossRefGoogle Scholar
  5. Ho TV, Schärer OD (2010) Translesion DNA synthesis polymerases in DNA interstrand crosslink repair. Environ Mol Mutagen 51:552–566. doi:10.1002/em.20573PubMedGoogle Scholar
  6. Hübscher U, Spadari S, Villani G, Maga G (2010) DNA polymerases: discovery, characterization and functions in cellular DNA transactions, 1st edn. World Scientific Publishing, Hackensack, NJCrossRefGoogle Scholar
  7. Kawamoto T, Araki K, Sonoda E et al (2005) Dual roles for DNA polymerase η in homologous DNA recombination and translesion DNA synthesis. Mol Cell 20:793–799. doi:10.1016/j.molcel.2005.10.016PubMedCrossRefGoogle Scholar
  8. Kornberg A, Baker TA (2005) DNA replication, 2nd edn. University Science, Sausalito, CAGoogle Scholar
  9. Kunkel TA, Burgers PM (2008) Dividing the workload at a eukaryotic replication fork. Trends Cell Biol 18:521–527. doi:10.1016/j.tcb.2008.08.005PubMedCentralPubMedCrossRefGoogle Scholar
  10. Larrea AA, Lujan SA, Kunkel TA (2010) SnapShot: DNA mismatch repair. Cell 141:730.e1. doi:10.1016/j.cell.2010.05.002PubMedCrossRefGoogle Scholar
  11. Lindahl T, Wood RD (1999) Quality control by DNA repair. Science 286:1897–1905PubMedCrossRefGoogle Scholar
  12. Liu P, Demple B (2010) DNA repair in mammalian mitochondria: much more than we thought? Environ Mol Mutagen 51:417–426. doi:10.1002/em.20576PubMedGoogle Scholar
  13. McEachern MJ, Haber JE (2006) Break-induced replication and recombinational telomere elongation in yeast. Annu Rev Biochem 75:111–135. doi:10.1146/annurev.biochem.74.082803.133234PubMedCrossRefGoogle Scholar
  14. Motamedi MR, Szigety SK, Rosenberg SM (1999) Double-strand-break repair recombination in Escherichia coli: physical evidence for a DNA replication mechanism in vivo. Genes Dev 13:2889–2903PubMedCentralPubMedCrossRefGoogle Scholar
  15. Pitcher RS, Brissett NC, Doherty AJ (2007) Nonhomologous end-joining in Bacteria: a microbial perspective. Annu Rev Microbiol 61:259–282. doi:10.1146/annurev.micro.61.080706.093354PubMedCrossRefGoogle Scholar
  16. Prasad R, Shock DD, Beard WA, Wilson SH (2010) Substrate channeling in mammalian base excision repair pathways: passing the baton. J Biol Chem 285:40479–40488. doi:10.1074/jbc.M110.155267PubMedCentralPubMedCrossRefGoogle Scholar
  17. Reardon JT, Cheng Y, Sancar A (2006) Repair of DNA-protein cross-links in mammalian cells. Cell Cycle 5:1366–1370PubMedCrossRefGoogle Scholar
  18. Waters LS, Minesinger BK, Wiltrout ME et al (2009) Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol Mol Biol Rev 73:134–154. doi:10.1128/MMBR. 00034-08PubMedCentralPubMedCrossRefGoogle Scholar
  19. Yamtich J, Sweasy JB (2010) DNA polymerase family X: function, structure, and cellular roles. BBA Protein Proteomics 1804:1136–1150. doi:10.1016/j.bbapap.2009.07.008CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institut de Pharmacologie et de Biologie StructuraleCNRS-Université Paul Sabatier Toulouse IIIToulouseFrance