Skip to main content

Exploring Nuclear Lamin–Chromatin Interactions and Their Signalling Cascades

  • Living reference work entry
  • First Online:
Molecular Life Sciences

Synopsis

The structural integrity of the cell nucleus and its response to mechanical stress dictate gene expression programs and signalling in diseases and developmental stages. Lamins are an integral part of the nuclear envelope and are implied in DNA repair, transcription, replication, apoptosis, differentiation, and nuclear positioning besides distinctive roles in cellular adhesion. Though mutations in lamin A/C and in lamin B lead to a diverse set of diseases called laminopathies and though the etiology of these diseases is known, the intricate signalling between chromatin and lamin remains to be understood. Interesting epigenetic cascades have been implied in laminopathies like Hutchinson–Gilford progeria syndrome (HGPS) and in muscular dystrophies. This entry details the interactions between the chromatin and lamin in cellular systems, mouse models, and the histone cross talk in such systems. The mechanosignalling of lamin through chromatin and the epigenetic changes associated...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Belmont AS, Zhai Y, Thilenius A (1993) Lamin B distribution and association with peripheral chromatin revealed by optical sectioning and electron microscopy tomography. J Cell Biol 123:1671–1685

    Article  CAS  PubMed  Google Scholar 

  • Boguslavsky RL, Stewartand CL, Worman HJ (2006) Nuclear lamin A inhibits adipocyte differentiation: implications for Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 15(4):653–663

    Article  CAS  PubMed  Google Scholar 

  • Bonne G, Di Barletta MR, Varnous S (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 21(3):285–288

    Article  CAS  PubMed  Google Scholar 

  • Coffinier C, Jung HJ, Nobumori C, Chang S, Tu Y, BarnesII RH, Yoshinaga Y, Jong PJD, Vergnes L, Reue K, Fong LG, Young SG (2011) Deficiencies in lamin B1 and lamin B2 cause neurodevelopmental defects and distinct nuclear shape abnormalities in neurons. Mol Biol Cell 22:4683–4693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Colussi C, Gurtner A, Rosati J, Illi B, Ragone G, Piaggio G, Moggio M, Lamperti C, Angelo GD, Clementi E, Minetti G, Mozzetta C, Antonini A, Capogrossi MC, Puri PL, Gaetano C (2009) Nitric oxide deficiency determines global chromatin changes in Duchenne muscular dystrophy. FASEB J 23(7):2131–2141

    Article  CAS  PubMed  Google Scholar 

  • Cupesi M, Yoshioka J, Gannon J, Kudinova A, Stewart CL, Lammerding J (2010) Attenuated hypertrophic response to pressure overload in a lamin A/C haploinsufficiency mouse. J Mol Cell Cardiol 48:1290–1297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dahl KN, Scaffidi P, Islam MF, Yodh AG, Wilson KL, Mistelli T (2006) Distinct structural and mechanical properties of the nuclear lamina in Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci 103(27):10271–10276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Favreau C, Higuet D, Courvalin JC, Buendia B (2004) Expression of a mutant lamin A that causes Emery-Dreifuss muscular dystrophy inhibits in vitro differentiation of C2C12 myoblasts. Mol Cell Biol 24(4):1481–1492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goldberg M, Harel A, Brandeis M, Rechsteiner T, Richmond TJ, Weiss AM, Gruenbaum Y (1999) The tail domain of lamin Dm0 binds histones H2A and H2B. Proc Natl Acad Sci U S A 96:2852–2857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Julie YJ, Lee RT, Vergnes L, Fong LG, Stewart CL, Reue K, Young SG, Zhang Q, Shanahan CM, Lammerding J (2007) Cell nuclei spin in the absence of lamin B1. J Biol Chem 282(27):20015–20026

    Article  Google Scholar 

  • Krishnan V, Chowa MZY, Wanga Z, Zhanga L, Liua B, Liud X, Zhou Z (2011) Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice. Proc Natl Acad Sci 108(30):12325–12330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kubben N, Voncken JW, Konings G, Weeghel MV, Hoogenhof MMG, Gijbels M, Erk AV, Schoonderwoerd K, Bosch BVD, Dahlmans V, Calis C, Houten SM, Misteli T, Pinto YM (2011) Post-natal myogenic and adipogenic developmental defects and metabolic impairment upon loss of A-type lamins. Nucleus 2(3):195–207

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee JSH, Hale CM, Panorchan P, Khatau SB, George JP, Tseng Y, Stewart CL, Hodzic D, Wirtz D (2007) Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration. Biophys J 93(7):2542–2552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Makatsori D, Polioudaki H, Shultz LD, Mclean K, Theodoropoulos PA, Singh PB, Georgatos SD (2004) The inner nuclear membrane protein LBR forms distinct microdomains and links epigenetically marked chromatin to the nuclear envelope. J Biol Chem 279:25567–25573

    Article  CAS  PubMed  Google Scholar 

  • Osouda S, Nakamura Y, Phalle SB, McConnell M, Horigome T, Sugiyama S, Fisher PA, Furukawa K (2005) Null mutants of Drosophila B-type lamin Dm(0) show aberrant tissue differentiation defects during cell proliferation. Dev Biol 284(1):219–232

    Article  CAS  PubMed  Google Scholar 

  • Schirmer EC, Foisner R (2007) Proteins that associate with lamins: many faces, many functions. Exp Cell Res 313:2167–2179

    Article  CAS  PubMed  Google Scholar 

  • Schumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, Eriksson M, Goldman AE, Khuon S, Collins FS, Jenuwein T, Goldman RD (2006) Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci 103(23):8703–8708

    Article  Google Scholar 

  • Shackleton S, Smallwood DT, Clayton P (2005) Compound heterozygous Zmpste24 mutations reduce prelamin A processing and result in a severe progeroid phenotype. J Med Genet 42(6):e36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Waterham HR, Koster J, Mooyer P, Kelley GI, Wilcox WI, Wanders RJA, Hennekam RCM, Oosterwijk JC (2003) Autosomal recessive HEM/Greenberg skeletal dysplasia is caused by 3β-hydroxysterol Δ14-reductase deficiency due to mutations in the lamin B receptor gene. Am J Hum Genet 72(4):1013–1017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang X, Lei K, Yuan X, Wu X, Zhuang Y, Xu T, Xu R, Han M (2009) SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64:173–187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahadevan Vijayalakshmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Ganai, S.A., Shashwath, M.K., Vijayalakshmi, M. (2014). Exploring Nuclear Lamin–Chromatin Interactions and Their Signalling Cascades. In: Wells, R., Bond, J., Klinman, J., Masters, B., Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_580-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_580-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics