Molecular Life Sciences

Living Edition
| Editors: Robert D. Wells, Judith S. Bond, Judith Klinman, Bettie Sue Siler Masters, Ellis Bell

Exploring Nuclear Lamin–Chromatin Interactions and Their Signalling Cascades

  • Shabir A. Ganai
  • Malli K. Shashwath
  • Mahadevan Vijayalakshmi
Living reference work entry


The structural integrity of the cell nucleus and its response to mechanical stress dictate gene expression programs and signalling in diseases and developmental stages. Lamins are an integral part of the nuclear envelope and are implied in DNA repair, transcription, replication, apoptosis, differentiation, and nuclear positioning besides distinctive roles in cellular adhesion. Though mutations in lamin A/C and in lamin B lead to a diverse set of diseases called laminopathies and though the etiology of these diseases is known, the intricate signalling between chromatin and lamin remains to be understood. Interesting epigenetic cascades have been implied in laminopathies like Hutchinson–Gilford progeria syndrome (HGPS) and in muscular dystrophies. This entry details the interactions between the chromatin and lamin in cellular systems, mouse models, and the histone cross talk in such systems. The mechanosignalling of lamin through chromatin and the epigenetic changes associated...


Muscular Dystrophy Nuclear Envelope LMNA Gene LMNA Mutation Lamin Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Belmont AS, Zhai Y, Thilenius A (1993) Lamin B distribution and association with peripheral chromatin revealed by optical sectioning and electron microscopy tomography. J Cell Biol 123:1671–1685CrossRefPubMedGoogle Scholar
  2. Boguslavsky RL, Stewartand CL, Worman HJ (2006) Nuclear lamin A inhibits adipocyte differentiation: implications for Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 15(4):653–663CrossRefPubMedGoogle Scholar
  3. Bonne G, Di Barletta MR, Varnous S (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 21(3):285–288CrossRefPubMedGoogle Scholar
  4. Coffinier C, Jung HJ, Nobumori C, Chang S, Tu Y, BarnesII RH, Yoshinaga Y, Jong PJD, Vergnes L, Reue K, Fong LG, Young SG (2011) Deficiencies in lamin B1 and lamin B2 cause neurodevelopmental defects and distinct nuclear shape abnormalities in neurons. Mol Biol Cell 22:4683–4693PubMedCentralCrossRefPubMedGoogle Scholar
  5. Colussi C, Gurtner A, Rosati J, Illi B, Ragone G, Piaggio G, Moggio M, Lamperti C, Angelo GD, Clementi E, Minetti G, Mozzetta C, Antonini A, Capogrossi MC, Puri PL, Gaetano C (2009) Nitric oxide deficiency determines global chromatin changes in Duchenne muscular dystrophy. FASEB J 23(7):2131–2141CrossRefPubMedGoogle Scholar
  6. Cupesi M, Yoshioka J, Gannon J, Kudinova A, Stewart CL, Lammerding J (2010) Attenuated hypertrophic response to pressure overload in a lamin A/C haploinsufficiency mouse. J Mol Cell Cardiol 48:1290–1297PubMedCentralCrossRefPubMedGoogle Scholar
  7. Dahl KN, Scaffidi P, Islam MF, Yodh AG, Wilson KL, Mistelli T (2006) Distinct structural and mechanical properties of the nuclear lamina in Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci 103(27):10271–10276PubMedCentralCrossRefPubMedGoogle Scholar
  8. Favreau C, Higuet D, Courvalin JC, Buendia B (2004) Expression of a mutant lamin A that causes Emery-Dreifuss muscular dystrophy inhibits in vitro differentiation of C2C12 myoblasts. Mol Cell Biol 24(4):1481–1492PubMedCentralCrossRefPubMedGoogle Scholar
  9. Goldberg M, Harel A, Brandeis M, Rechsteiner T, Richmond TJ, Weiss AM, Gruenbaum Y (1999) The tail domain of lamin Dm0 binds histones H2A and H2B. Proc Natl Acad Sci U S A 96:2852–2857PubMedCentralCrossRefPubMedGoogle Scholar
  10. Julie YJ, Lee RT, Vergnes L, Fong LG, Stewart CL, Reue K, Young SG, Zhang Q, Shanahan CM, Lammerding J (2007) Cell nuclei spin in the absence of lamin B1. J Biol Chem 282(27):20015–20026CrossRefGoogle Scholar
  11. Krishnan V, Chowa MZY, Wanga Z, Zhanga L, Liua B, Liud X, Zhou Z (2011) Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice. Proc Natl Acad Sci 108(30):12325–12330PubMedCentralCrossRefPubMedGoogle Scholar
  12. Kubben N, Voncken JW, Konings G, Weeghel MV, Hoogenhof MMG, Gijbels M, Erk AV, Schoonderwoerd K, Bosch BVD, Dahlmans V, Calis C, Houten SM, Misteli T, Pinto YM (2011) Post-natal myogenic and adipogenic developmental defects and metabolic impairment upon loss of A-type lamins. Nucleus 2(3):195–207PubMedCentralCrossRefPubMedGoogle Scholar
  13. Lee JSH, Hale CM, Panorchan P, Khatau SB, George JP, Tseng Y, Stewart CL, Hodzic D, Wirtz D (2007) Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration. Biophys J 93(7):2542–2552PubMedCentralCrossRefPubMedGoogle Scholar
  14. Makatsori D, Polioudaki H, Shultz LD, Mclean K, Theodoropoulos PA, Singh PB, Georgatos SD (2004) The inner nuclear membrane protein LBR forms distinct microdomains and links epigenetically marked chromatin to the nuclear envelope. J Biol Chem 279:25567–25573CrossRefPubMedGoogle Scholar
  15. Osouda S, Nakamura Y, Phalle SB, McConnell M, Horigome T, Sugiyama S, Fisher PA, Furukawa K (2005) Null mutants of Drosophila B-type lamin Dm(0) show aberrant tissue differentiation defects during cell proliferation. Dev Biol 284(1):219–232CrossRefPubMedGoogle Scholar
  16. Schirmer EC, Foisner R (2007) Proteins that associate with lamins: many faces, many functions. Exp Cell Res 313:2167–2179CrossRefPubMedGoogle Scholar
  17. Schumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, Eriksson M, Goldman AE, Khuon S, Collins FS, Jenuwein T, Goldman RD (2006) Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci 103(23):8703–8708CrossRefGoogle Scholar
  18. Shackleton S, Smallwood DT, Clayton P (2005) Compound heterozygous Zmpste24 mutations reduce prelamin A processing and result in a severe progeroid phenotype. J Med Genet 42(6):e36PubMedCentralCrossRefPubMedGoogle Scholar
  19. Waterham HR, Koster J, Mooyer P, Kelley GI, Wilcox WI, Wanders RJA, Hennekam RCM, Oosterwijk JC (2003) Autosomal recessive HEM/Greenberg skeletal dysplasia is caused by 3β-hydroxysterol Δ14-reductase deficiency due to mutations in the lamin B receptor gene. Am J Hum Genet 72(4):1013–1017PubMedCentralCrossRefPubMedGoogle Scholar
  20. Zhang X, Lei K, Yuan X, Wu X, Zhuang Y, Xu T, Xu R, Han M (2009) SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64:173–187PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Shabir A. Ganai
    • 1
  • Malli K. Shashwath
    • 1
  • Mahadevan Vijayalakshmi
    • 1
  1. 1.Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical & BiotechnologySASTRA UniversityThanjavurIndia