Skip to main content

Bacterial DNA Replicases

  • Living reference work entry
  • First Online:
Molecular Life Sciences
  • 526 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aravind L, Koonin EV (1998) Phosphoesterase domains associated with DNA polymerases of diverse origins. Nucleic Acids Res 26:3746–3752

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ason B, Bertram JG, Hingorani MM, Beechem JM, O’Donnell ME, Goodman MF, Bloom LB (2000) A model for Escherichia coli DNA polymerase III holoenzyme assembly at primer/template ends DNA triggers a change in binding specificity of the γ complex clamp loader. J Biol Chem 275:3006–3015

    CAS  PubMed  Google Scholar 

  • Ason B, Handayani R, Williams CR, Bertram JG, Hingorani MM, O’Donnell ME, Goodman MF, Bloom LB (2003) Mechanism of loading the Escherichia coli DNA polymerase III β sliding clamp on DNA Bona fide primer/templates preferentially trigger the γ complex to hydrolyze ATP and load the clamp. J Biol Chem 278:10033–10040

    CAS  PubMed  Google Scholar 

  • Bailey S, Wing RA, Steitz TA (2006) The structure of T. aquaticus DNA polymerase III is distinct from eukaryotic replicative DNA polymerases. Cell 126:893–904

    CAS  PubMed  Google Scholar 

  • Banos B, Lazaro JM, Villar L, Salas M, De Vega M (2008) Editing of misaligned 3′-termini by an intrinsic 3′-5′ exonuclease activity residing in the PHP domain of a family X DNA polymerase. Nucleic Acids Res 36:5736–5749

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barros T, Guenther J, Kelch B, Anaya J, Prabhakar A, O’Donnell M, Kuriyan J, Lamers MH (2013) A structural role for the PHP domain in E. coli DNA polymerase III. BMC Struct Biol 13:8

    PubMed Central  CAS  PubMed  Google Scholar 

  • Beese LS, Steitz TA (1991) Structural basis for the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J 10:25–34

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bierne H, Vilette D, Ehrlich SD, Michel B (1997) Isolation of a dnaE mutation which enhances recA-independent homologous recombination in the Escherichia coli chromosome. Mol Microbiol 24:1225–1234

    CAS  PubMed  Google Scholar 

  • Binder JK, Douma LG, Ranjit S, Kanno DM, Chakraborty M, Bloom LB, Levitus M (2014) Intrinsic stability and oligomerization dynamics of DNA processivity clamps. Nucleic Acids Res 42:6476–6486

    PubMed Central  CAS  PubMed  Google Scholar 

  • Blasius M, Shevelev I, Jolivet E, Sommer S, Hübscher U (2006) DNA polymerase X from Deinococcus radiodurans possesses a structure-modulated 3′→5′ exonuclease activity involved in radioresistance. Mol Microbiol 60:165–176

    CAS  PubMed  Google Scholar 

  • Blinkowa AL, Walker JR (1990) Programmed ribosomal frameshifting generates the Escherichia coli DNA polymerase III γ subunit from within the Ï„ subunit reading frame. Nucleic Acids Res 18:1725–1729

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bruand C, Ehrlich SD, Janniere L (1995) Primosome assembly site in Bacillus subtilis. EMBO J 14:2642–2650

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bruand C, Farache M, McGovern S, Ehrlich SD, Polard P (2001) DnaB, DnaD and DnaI proteins are components of the Bacillus subtilis replication restart primosome. Mol Microbiol 42:245–256

    CAS  PubMed  Google Scholar 

  • Bruck I, O’Donnell ME (2000) The DNA replication machine of a gram-positive organism. J Biol Chem 275:28971–28983

    CAS  PubMed  Google Scholar 

  • Bruck I, Goodman MF, O’Donnell ME (2003) The essential C family DnaE polymerase is error-prone and efficient at lesion bypass. J Biol Chem 278:44361–44368

    CAS  PubMed  Google Scholar 

  • Bruck I, Georgescu RE, O’Donnell M (2005) Conserved interactions in the Staphylococcus aureus DNA PolC chromosome replication machine. J Biol Chem 280:18152–18162

    CAS  PubMed  Google Scholar 

  • Brutlag D, Kornberg A (1972) Enzymatic synthesis of DNA. XXXVI. A proof reading function of the 3′→5′ exonuclease activity in deoxyribonucleic acid polymerases. J Biol Chem 247:241–248

    CAS  PubMed  Google Scholar 

  • Bunting KA, Roe SM, Pearl LH (2003) Structural basis for recruitment of translesion DNA polymerase Pol IV/DinB to the β-clamp. EMBO J 22:5883–5892

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burnouf DY, Olieric V, Wagner J, Fujii S, Reinbolt J, Fuchs RP, Dumas P (2004) Structural and biochemical analysis of sliding clamp/ligand interactions suggest a competition between replicative and translesion DNA polymerases. J Mol Biol 335:1187–1197

    CAS  PubMed  Google Scholar 

  • Canceill D, Ehrlich SD (1996) Copy-choice recombination mediated by DNA polymerase III holoenzyme from Escherichia coli. Proc Natl Acad Sci U S A 93:6647–6652

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen D, Yue H, Spiering MM, Benkovic SJ (2013) Insights into Okazaki fragment synthesis by the T4 replisome: the fate of lagging-strand holoenzyme components and their influence on Okazaki fragment size. J Biol Chem 288:20807–20816

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cho WK, Jergic S, Kim D, Dixon NE, Lee JB (2014) Loading dynamics of a sliding DNA clamp. Angew Chem Int Ed Engl 53:6768–6771

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cisneros GA, Perera L, Schaaper RM, Pedersen LC, London RE, Pedersen LG, Darden TA (2009) Reaction mechanism of the ε subunit of E. coli DNA polymerase III: insights into active site metal coordination and catalytically significant residues. J Am Chem Soc 131:1550–1556

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dalrymple BP, Kongsuwan K, Wijffels G, Dixon NE, Jennings PA (2001) A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems. Proc Natl Acad Sci U S A 98:11627–11632

    PubMed Central  CAS  PubMed  Google Scholar 

  • Derose EF, Li D, Darden T, Harvey S, Perrino FW, Schaaper RM, London RE (2002) Model for the catalytic domain of the proofreading ε subunit of Escherichia coli DNA polymerase III based on NMR structural data. Biochemistry 41:94–110

    CAS  PubMed  Google Scholar 

  • Dervyn E, Suski C, Daniel R, Bruand C, Chapuis J, Errington J, Janniere L, Ehrlich SD (2001) Two essential DNA polymerases at the bacterial replication fork. Science 294:1716–1719

    CAS  PubMed  Google Scholar 

  • Doherty AJ, Serpell LC, Ponting CP (1996) The helix-hairpin-helix DNA-binding motif: a structural basis for non-sequence-specific recognition of DNA. Nucleic Acids Res 24:2488–2497

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dohrmann PR, McHenry CS (2005) A bipartite polymerase-processivity factor interaction: only the internal β binding site of the α subunit is required for processive replication by the DNA polymerase III holoenzyme. J Mol Biol 350:228–239

    CAS  PubMed  Google Scholar 

  • Dohrmann PR, Manhart CM, Downey CD, McHenry CS (2011) The rate of polymerase release upon filing the gap between Okazaki fragments is inadequate to support cycling during lagging strand synthesis. J Mol Biol 414:15–27

    PubMed Central  CAS  PubMed  Google Scholar 

  • Downey CD, McHenry CS (2010) Chaperoning of a replicative polymerase onto a newly-assembled DNA-bound sliding clamp by the clamp loader. Mol Cell 37:481–491

    PubMed Central  CAS  PubMed  Google Scholar 

  • Downey CD, Crooke E, McHenry CS (2011) Polymerase chaperoning and multiple ATPase sites enable the E. coli DNA polymerase III holoenzyme to rapidly form initiation complexes. J Mol Biol 412:340–353

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dua R, Levy DL, Campbell JL (1999) Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol ε and its unexpected ability to support growth in the absence of the DNA polymerase domain. J Biol Chem 274:22283–22288

    CAS  PubMed  Google Scholar 

  • Fang J, Nevin P, Kairys V, Venclovas C, Engen JR, Beuning PJ (2014) Conformational analysis of processivity clamps in solution demonstrates that tertiary structure does not correlate with protein dynamics. Structure 22:572–581

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fay PJ, Johanson KO, McHenry CS, Bambara RA (1981) Size classes of products synthesized processively by DNA polymerase III and DNA polymerase III holoenzyme of Escherichia coli. J Biol Chem 256:976–983

    CAS  PubMed  Google Scholar 

  • Fay PJ, Johanson KO, McHenry CS, Bambara RA (1982) Size classes of products synthesized processively by two subassemblies of Escherichia coli DNA polymerase III holoenzyme. J Biol Chem 257:5692–5699

    CAS  PubMed  Google Scholar 

  • Fijalkowska IJ, Schaaper RM (1993) Antimutator mutations in the α subunit of Escherichia coli DNA polymerase III identification of the responsible mutations and alignment with other DNA polymerases. Genetics 134:1039–1044

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fijalkowska IJ, Schaaper RM, Jonczyk P (2012) DNA replication fidelity in Escherichia coli: a multi-DNA polymerase affair. FEMS Microbiol Rev 36(6):1105–1121

    PubMed Central  CAS  PubMed  Google Scholar 

  • Flower AM, McHenry CS (1990) The γ subunit of DNA polymerase III holoenzyme of Escherichia coli is produced by ribosomal frameshifting. Proc Natl Acad Sci U S A 87:3713–3717

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gao D, McHenry CS (2001a) Ï„ binds and organizes Escherichia coli replication proteins through distinct domains. Domain III, shared by γ and Ï„, binds δδ′ and χψ. J Biol Chem 276:4447–4453

    CAS  PubMed  Google Scholar 

  • Gao D, McHenry CS (2001b) Ï„ binds and organizes Escherichia coli replication proteins through distinct domains. domain IV, located within the unique C terminus of Ï„, binds the replication fork helicase, DnaB. J Biol Chem 276:4441–4446

    CAS  PubMed  Google Scholar 

  • Gao D, McHenry CS (2001c) Ï„ binds and organizes Escherichia coli replication proteins through distinct domains: partial proteolysis of terminally tagged Ï„ to determine candidate domains and to assign domain V as the α binding domain. J Biol Chem 276:4433–4440

    CAS  PubMed  Google Scholar 

  • Georgescu RE, Kim SS, Yurieva O, Kuriyan J, Kong XP, O’Donnell M (2008) Structure of a sliding clamp on DNA. Cell 132:43–54

    PubMed Central  CAS  PubMed  Google Scholar 

  • Georgescu RE, Kurth I, Yao NY, Stewart J, Yurieva O, O’Donnell M (2009) Mechanism of polymerase collision release from sliding clamps on the lagging strand. EMBO J 28:2981–2991

    PubMed Central  CAS  PubMed  Google Scholar 

  • Glover BP, McHenry CS (1998) The χψ subunits of DNA polymerase III holoenzyme bind to single-stranded DNA-binding protein (SSB) and facilitate replication of a SSB-coated template. J Biol Chem 273:23476–23484

    CAS  PubMed  Google Scholar 

  • Glover BP, McHenry CS (2000) The DnaX-binding subunits δ′ and ψ are bound to γ and not Ï„ in the DNA polymerase III holoenzyme. J Biol Chem 275:3017–3020

    CAS  PubMed  Google Scholar 

  • Glover BP, Pritchard AE, McHenry CS (2001) Ï„ binds and organizes Escherichia coli replication proteins through distinct domains. Domain III, shared by γ and Ï„, oligomerizes DnaX. J Biol Chem 276:35842–35846

    CAS  PubMed  Google Scholar 

  • Goodman MF (2002) Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu Rev Biochem 71:17–50

    CAS  PubMed  Google Scholar 

  • Griep MA, McHenry CS (1992) Fluorescence energy transfer between the primer and the β subunit of the DNA polymerase III holoenzyme*. J Biol Chem 267:3052–3059

    CAS  PubMed  Google Scholar 

  • Griep M, Reems J, Franden M, McHenry C (1990) Reduction of the potent DNA polymerase III holoenzyme 3′→5′ exonuclease activity by template-primer analogs. Biochemistry 29:9006–9014

    CAS  PubMed  Google Scholar 

  • Hamdan S, Carr PD, Brown SE, Ollis DL, Dixon NE (2002) Structural basis for proofreading during replication of the Escherichia coli chromosome. Structure 10:535–546

    CAS  PubMed  Google Scholar 

  • Hamdan S, Loparo JJ, Takahashi M, Richardson CC, van Oijen AM (2009) Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis. Nature 457:336–339

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hayner JN, Bloom LB (2013) The beta sliding clamp closes around DNA prior to release by the Escherichia coli clamp loader gamma complex. J Biol Chem 288:1162–1170

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heller RC, Marians KJ (2005) The disposition of nascent strands at stalled replication forks dictates the pathway of replisome loading during restart. Mol Cell 17:733–743

    CAS  PubMed  Google Scholar 

  • Hiratsuka K, Reha-Krantz LJ (2000) Identification of Escherichia coli dnaE (polC) mutants with altered sensitivity to 2′,3′-dideoxyadenosine. J Bacteriol 182:3942–3947

    PubMed Central  CAS  PubMed  Google Scholar 

  • Indiani C, O’Donnell ME (2003) Mechanism of the δ wrench in opening the β sliding clamp. J Biol Chem 278:40272–40281

    CAS  PubMed  Google Scholar 

  • Ivanov I, Chapados BR, McCammon JA, Tainer JA (2006) Proliferating cell nuclear antigen loaded onto double-stranded DNA: dynamics, minor groove interactions and functional implications. Nucleic Acids Res 34:6023–6033

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jergic S, Horan NP, Elshenawy MM, Mason CE, Urathamakul T, Ozawa K, Robinson A, Goudsmits JM, Wang Y, Pan X, Beck JL, van Oijen AM, Huber T, Hamdan SM, Dixon NE (2013) A direct proofreader-clamp interaction stabilizes the Pol III replicase in the polymerization mode. EMBO J 32:1322–1333

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jeruzalmi D, Yurieva O, Zhao Y, Young M, Stewart J, Hingorani M, O’Donnell ME, Kuriyan J (2001) Mechanism of processivity clamp opening by the δ subunit wrench of the clamp loader complex of E. coli DNA polymerase III. Cell 106:417–428

    CAS  PubMed  Google Scholar 

  • Kelch BA, Makino DL, O’Donnell M, Kuriyan J (2011) How a DNA polymerase clamp loader opens a sliding clamp. Science 334:1675–1680

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim DR, McHenry CS (1996a) Biotin tagging deletion analysis of domain limits involved in protein-macromolecular interactions: mapping the Ï„ binding domain of the DNA polymerase III α subunit. J Biol Chem 271:20690–20698

    CAS  PubMed  Google Scholar 

  • Kim DR, McHenry CS (1996b) Identification of the β-binding domain of the α subunit of Escherichia coli polymerase III holoenzyme. J Biol Chem 271:20699–20704

    CAS  PubMed  Google Scholar 

  • Kim DR, McHenry CS (1996c) In vivo assembly of overproduced DNA polymerase III: overproduction, purification, and characterization of the α, α − ε, and α − ε − θ subunits. J Biol Chem 271:20681–20689

    CAS  PubMed  Google Scholar 

  • Kim S, Dallmann HG, McHenry CS, Marians KJ (1996a) Coupling of a replicative polymerase and helicase: a Ï„-DnaB interaction mediates rapid replication fork movement. Cell 84:643–650

    CAS  PubMed  Google Scholar 

  • Kim S, Dallmann HG, McHenry CS, Marians KJ (1996b) Ï„ protects β in the leading-strand polymerase complex at the replication fork. J Biol Chem 271:4315–4318

    CAS  PubMed  Google Scholar 

  • Kim DR, Pritchard AE, McHenry CS (1997) Localization of the active site of the α subunit of the Escherichia coli DNA polymerase III holoenzyme. J Bacteriol 179:6721–6728

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kong XP, Onrust R, O’Donnell ME, Kuriyan J (1992) Three-dimensional structure of the β subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 69:425–437

    CAS  PubMed  Google Scholar 

  • Koonin EV, Bork P (1996) Ancient duplication of DNA polymerase inferred from analysis of complete bacterial genomes. Trends Biochem Sci 21:128–129

    CAS  PubMed  Google Scholar 

  • Kornberg A, Baker TA (1992) DNA replication. WH Freeman, New York

    Google Scholar 

  • LaDuca RJ, Crute JJ, McHenry CS, Bambara RA (1986) The β subunit of the Escherichia coli DNA polymerase III holoenzyme interacts functionally with the catalytic core in the absence of other subunits. J Biol Chem 261:7550–7557

    CAS  PubMed  Google Scholar 

  • Lamers MH, Georgescu RE, Lee SG, O’Donnell M, Kuriyan J (2006) Crystal structure of the catalytic α subunit of E. coli replicative DNA polymerase III. Cell 126:881–892

    CAS  PubMed  Google Scholar 

  • Le Chatelier E, Becherel OJ, D’Alencon E, Canceill D, Ehrlich SD, Fuchs RP, Janniere L (2004) Involvement of DnaE, the second replicative DNA polymerase from Bacillus subtilis, in DNA mutagenesis. J Biol Chem 279:1757–1767

    PubMed  Google Scholar 

  • Lebowitz JH, McMacken R (1986) The Escherichia coli DnaB replication protein is a DNA helicase. J Biol Chem 261:4738–4748

    CAS  PubMed  Google Scholar 

  • Leu FP, Georgescu R, O’Donnell ME (2003) Mechanism of the E. coli Ï„ processivity switch during lagging-strand synthesis. Mol Cell 11:315–327

    CAS  PubMed  Google Scholar 

  • Low RL, Rashbaum SA, Cozzarelli NR (1974) Mechanism of inhibition of Bacillus subtilis DNA polymerase III by the arylhydrazinopyrimidine antimicrobial agents. Proc Natl Acad Sci U S A 71:2973–2977

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maki H, Mo JY, Sekiguchi M (1991) A strong mutator effect caused by an amino acid change in the α subunit of DNA polymerase III of Escherichia coli. J Biol Chem 266:5055–5061

    CAS  PubMed  Google Scholar 

  • Manhart CM, McHenry CS (2013) The PriA replication restart protein blocks replicase access prior to helicase assembly and directs template specificity through its ATPase activity. J Biol Chem 288:3989–3999

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marceau AH, Bahng S, Massoni SC, George NP, Sandler SJ, Marians KJ, Keck JL (2011) Structure of the SSB-DNA polymerase III interface and its role in DNA replication. EMBO J 30:4236–4247

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marians KJ, Hiasa H, Kim DR, McHenry CS (1998) Role of the core DNA polymerase III subunits at the replication fork: α is the only subunit required for processive replication. J Biol Chem 273:2452–2457

    CAS  PubMed  Google Scholar 

  • McHenry CS (1982) Purification and characterization of DNA polymerase III′: identification of Ï„ as a subunit of the DNA polymerase III holoenzyme. J Biol Chem 257:2657–2663

    CAS  PubMed  Google Scholar 

  • McHenry CS (1988) DNA polymerase III holoenzyme of Escherichia coli. Annu Rev Biochem 57:519–550

    CAS  PubMed  Google Scholar 

  • McHenry CS (2011) DNA replicases from a bacterial perspective. Annu Rev Biochem 80:403–436

    CAS  PubMed  Google Scholar 

  • Millar D, Trakselis MA, Benkovic SJ (2004) On the solution structure of the T4 sliding clamp (gp45). Biochemistry 43:12723–12727

    CAS  PubMed  Google Scholar 

  • Miller H, Perrino FW (1996) Kinetic mechanism of the 3′ → 5′ proofreading exonuclease of DNA polymerase III analysis by steady state and pre-steady state methods. Biochemistry 35:12919–12925

    CAS  PubMed  Google Scholar 

  • Moarefi I, Jeruzalmi D, Turner J, O’Donnell ME, Kuriyan J (2000) Crystal structure of the DNA polymerase processivity factor of T4 bacteriophage. J Mol Biol 296:1215–1223

    CAS  PubMed  Google Scholar 

  • Mok M, Marians KJ (1987a) Formation of rolling-circle molecules during ϕΧ174 complementary strand DNA replication. J Biol Chem 262:2304–2309

    CAS  PubMed  Google Scholar 

  • Mok M, Marians KJ (1987b) The Escherichia coli preprimosome and DNA B helicase can form replication forks that move at the same rate. J Biol Chem 262:16644–16654

    CAS  PubMed  Google Scholar 

  • Nethanel T, Kaufmann G (1990) Two DNA polymerases may be required for synthesis of the lagging DNA strand of simian virus 40. J Virol 64:5912–5918

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nick McElhinny SA, Gordenin DA, Stith CM, Burgers PMJ, Kunkel TA (2008) Division of labor at the eukaryotic replication fork. Mol Cell 30:137–144

    PubMed Central  CAS  PubMed  Google Scholar 

  • O’Donnell ME, Kornberg A (1985) Complete replication of templates by Escherichia coli DNA polymerase III holoenzyme. J Biol Chem 260:12884–12889

    PubMed  Google Scholar 

  • Oller AR, Schaaper R (1994) Spontaneous mutation in Escherichia coli containing the DnaE911 DNA polymerase antimutator allele. Genetics 138:263–270

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ozawa K, Jergic S, Park AY, Dixon NE, Otting G (2008) The proofreading exonuclease subunit ε of Escherichia coli DNA polymerase III is tethered to the polymerase subunit α via a flexible linker. Nucleic Acids Res 36:5074–5082

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ozawa K, Horan NP, Robinson A, Yagi H, Hill FR, Jergic S, Xu ZQ, Loscha KV, Li N, Tehei M, Oakley AJ, Otting G, Huber T, Dixon NE (2013) Proofreading exonuclease on a tether: the complex between the E. coli DNA polymerase III subunits alpha, epsilon, theta and beta reveals a highly flexible arrangement of the proofreading domain. Nucleic Acids Res 41:5354–5367

    PubMed Central  CAS  PubMed  Google Scholar 

  • Paschall CO, Thompson JA, Marzahn MR, Chiraniya A, Hayner JN, O’Donnell M, Robbins AH, McKenna R, Bloom LB (2011) The Escherichia coli clamp loader can actively pry open the beta-sliding clamp. J Biol Chem 286:42704–42714

    PubMed Central  CAS  PubMed  Google Scholar 

  • Polard P, Marsin S, McGovern S, Velten M, Wigley DB, Ehrlich SD, Bruand C (2002) Restart of DNA replication in gram-positive bacteria: functional characterisation of the Bacillus subtilis PriA initiator. Nucleic Acids Res 30:1593–1605

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pritchard AE, McHenry CS (1999) Identification of the acidic residues in the active site of DNA polymerase III. J Mol Biol 285:1067–1080

    CAS  PubMed  Google Scholar 

  • Pursell ZF, Isoz I, Lundstrom EB, Johansson E, Kunkel TA (2007) Yeast DNA polymerase ε participates in leading-strand DNA replication. Science 317:127–130

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reems JA, McHenry CS (1994) Escherichia coli DNA polymerase III holoenzyme footprints three helical turns of its primer. J Biol Chem 269:33091–33096

    CAS  PubMed  Google Scholar 

  • Reems JA, Griep MA, McHenry CS (1991) The proofreading activity of DNA polymerase III responds like the elongation activity to auxiliary subunits. J Biol Chem 266:4878–4882

    CAS  PubMed  Google Scholar 

  • Reems JA, Wood S, McHenry CS (1995) Escherichia coli DNA polymerase III holoenzyme subunits α, β and γ directly contact the primer template. J Biol Chem 270:5606–5613

    CAS  PubMed  Google Scholar 

  • Sanders GM, Dallmann HG, McHenry CS (2010) Reconstitution of the B. subtilis replisome with 13 proteins including two distinct replicases. Mol Cell 37:273–281

    CAS  PubMed  Google Scholar 

  • Sawaya MR, Prasad R, Wilson SH, Kraut J, Pelletier H (1997) Crystal structures of human DNA polymerase β complexed with gapped and nicked DNA: evidence for an induced fit mechanism. Biochemistry 36:11205–11215

    CAS  PubMed  Google Scholar 

  • Scheuermann R, Tam S, Burgers PMJ, Lu C, Echols H (1983) Identification of the ε-subunit of Escherichia coli DNA polymerase III holoenzyme as the dnaQ gene product: a fidelity subunit for DNA replication. Proc Natl Acad Sci U S A 80:7085–7089

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shamoo Y, Steitz TA (1999) Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex. Cell 99:155–166

    CAS  PubMed  Google Scholar 

  • Simonetta KR, Kazmirski SL, Goedken ER, Cantor AJ, Kelch BA, McNally R, Seyedin SN, Makino DL, O’Donnell M, Kuriyan J (2009) The mechanism of ATP-dependent primer-template recognition by a clamp loader complex. Cell 137:659–671

    PubMed Central  CAS  PubMed  Google Scholar 

  • Slater SC, Lifsics MR, O’Donnell ME, Maurer R (1994) holE, the gene coding for the θ subunit of DNA polymerase III of Escherichia coli: characterization of a holE mutant and comparison with a dnaQ (ε-subunit) mutant. J Bacteriol 176:815–821

    PubMed Central  CAS  PubMed  Google Scholar 

  • Song MS, Pham PT, Olson M, Carter JR, Franden MA, Schaaper RM, McHenry CS (2001) The δ and δ′ subunits of the DNA polymerase III holoenzyme are essential for initiation complex formation and processive elongation. J Biol Chem 276:35165–35175

    CAS  PubMed  Google Scholar 

  • Stano NM, Chen J, McHenry CS (2006) A coproofreading Zn(2+)-dependent exonuclease within a bacterial replicase. Nat Struct Mol Biol 13:458–459

    CAS  PubMed  Google Scholar 

  • Steitz TA (1999) DNA polymerases: structural diversity and common mechanisms. J Biol Chem 274:17395–17398

    CAS  PubMed  Google Scholar 

  • Stephens KM, McMacken R (1997) Functional properties of replication fork assemblies established by the bacteriophage λ O and P replication proteins. J Biol Chem 272:28800–28813

    CAS  PubMed  Google Scholar 

  • Stewart J, Hingorani MM, Kelman Z, O’Donnell ME (2001) Mechanism of β clamp opening by the δ subunit of Escherichia coli DNA polymerase III holoenzyme. J Biol Chem 276:19182–19189

    CAS  PubMed  Google Scholar 

  • Strauss BS, Roberts R, Francis L, Pouryazdanparast P (2000) Role of the dinB gene product in spontaneous mutation in Escherichia coli with an impaired replicative polymerase. J Bacteriol 182:6742–6750

    PubMed Central  CAS  PubMed  Google Scholar 

  • Studwell PS, O’Donnell ME (1990) Processive replication is contingent on the exonuclease subunit of DNA polymerase III holoenzyme. J Biol Chem 265:1171–1178

    CAS  PubMed  Google Scholar 

  • Stukenberg PT, Turner J, O’Donnell ME (1994) An explanation for lagging strand replication: polymerase hopping among DNA sliding clamps. Cell 78:877–887

    CAS  PubMed  Google Scholar 

  • Taft-Benz SA, Schaaper RM (2004) The θ subunit of Escherichia coli DNA polymerase III: a role in stabilizing the ε proofreading subunit. J Bacteriol 186:2774–2780

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tainer JA, McCammon JA, Ivanov I (2010) Recognition of the ring-opened state of proliferating cell nuclear antigen by replication factor C promotes eukaryotic clamp-loading. J Am Chem Soc 132:7372–7378

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tarantino PM, Zhi C, Gambino JJ, Wright GE, Brown NC (1999) 6-Anilinouracil-based inhibitors of Bacillus subtilis DNA polymerase III: antipolymerase and antimicrobial structure-activity relationships based on substitution at uracil N3. J Med Chem 42:2035–2040

    CAS  PubMed  Google Scholar 

  • Teplyakov A, Obmolova G, Khil PP, Howard AJ, Camerini-Otero RD, Gilliland GL (2003) Crystal structure of the Escherichia coli YcdX protein reveals a trinuclear zinc active site. Proteins 51:315–318

    CAS  PubMed  Google Scholar 

  • Theobald DL, Mitton-Fry RM, Wuttke DS (2003) Nucleic acid recognition by OB-fold proteins. Annu Rev Biophys Biomol Struct 32:115–133

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson JA, Paschall CO, O’Donnell M, Bloom LB (2009) A slow ATP-induced conformational change limits the rate of DNA binding but not the rate of β-clamp binding by the Escherichia coli γ complex clamp loader. J Biol Chem 284:32147–32157

    PubMed Central  CAS  PubMed  Google Scholar 

  • Toste-Rego A, Holding AN, Kent H, Lamers MH (2013) Architecture of the Pol III-clamp-exonuclease complex reveals key roles of the exonuclease subunit in processive DNA synthesis and repair. EMBO J 32:1334–1343

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tsuchihashi Z, Kornberg A (1990) Translational frameshifting generates the γ subunit of DNA polymerase III holoenzyme. Proc Natl Acad Sci U S A 87:2516–2520

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vandewiele D, Fernandez de Henestrosa AR, Timms AR, Bridges BA, Woodgate R (2002) Sequence analysis and phenotypes of five temperature sensitive mutator alleles of dnaE, encoding modified alpha-catalytic subunits of Escherichia coli DNA polymerase III holoenzyme. Mutat Res 499:85–95

    CAS  PubMed  Google Scholar 

  • Velten M, McGovern S, Marsin S, Ehrlich SD, Noirot P, Polard P (2003) A two-protein strategy for the functional loading of a cellular replicative DNA helicase. Mol Cell 11:1009–1020

    CAS  PubMed  Google Scholar 

  • Wang JD, Sanders GM, Grossman AD (2007) Nutritional control of elongation of DNA replication by (p)ppGpp. Cell 128:865–875

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wieczorek A, McHenry CS (2006) The NH(2)-terminal php domain of the α subunit of the E. coli replicase binds the ε proofreading subunit. J Biol Chem 281:12561–12567

    CAS  PubMed  Google Scholar 

  • Wing RA, Bailey S, Steitz TA (2008) Insights into the replisome from the structure of a ternary complex of the DNA polymerase III α-subunit. J Mol Biol 382:859–869

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu CA, Zechner EL, Marians KJ (1992a) Coordinated leading and lagging-strand synthesis at the Escherichia coli DNA replication fork I multiple effectors act to modulate Okazaki fragment size. J Biol Chem 267:4030–4044

    CAS  PubMed  Google Scholar 

  • Wu CA, Zechner EL, Reems JA, McHenry CS, Marians KJ (1992b) Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork: V Primase action regulates the cycle of Okazaki fragment synthesis. J Biol Chem 267:4074–4083

    CAS  PubMed  Google Scholar 

  • Xu L, Marians KJ (2003) PriA mediates DNA replication pathway choice at recombination intermediates. Mol Cell 11:817–826

    CAS  PubMed  Google Scholar 

  • Yang J, Zhuang Z, Roccasecca RM, Trakselis MA, Benkovic SJ (2004) The dynamic processivity of the T4 DNA polymerase during replication. Proc Natl Acad Sci U S A 101:8289–8294

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yao N, Hurwitz J, O’Donnell ME (2000) Dynamics of β and proliferating cell nuclear antigen sliding clamps in traversing DNA secondary structure. J Biol Chem 275:1421–1432

    CAS  PubMed  Google Scholar 

  • Yuan Q, McHenry CS (2009) Strand displacement by DNA polymerase III occurs through a Ï„-ψ-χ link to SSB coating the lagging strand template. J Biol Chem 284:31672–31679

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan Q, McHenry CS (2014) Cycling of the E. coli lagging strand polymerase is triggered exclusively by the availability of a new primer at the replication fork. Nucleic Acids Res 42:1747–1756

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles S. McHenry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

McHenry, C.S. (2014). Bacterial DNA Replicases. In: Wells, R., Bond, J., Klinman, J., Masters, B., Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_54-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_54-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics