Skip to main content

HDAC Inhibitors Entinostat and Suberoylanilide Hydroxamic Acid (SAHA): The Ray of Hope for Cancer Therapy

  • Living reference work entry
  • First Online:
Molecular Life Sciences

Synopsis

The process of transcription is tightly controlled by the acetylation and deacetylation of histone proteins. Histone acetyltransferases (HATs) enhance the acetylation of histone proteins, thereby causing gene activation, while histone deacetylases (HDACs) show the opposite effect. The histone proteins are no longer only inert structures but are instructive scaffolds governing gene expression programs by responding to a plethora of internal and external cues. HDAC overexpression plays a critical role in gene dysregulation which ends in life-threatening disorders including cancer. HDAC inhibitors restrain HDACs and are the newly emerging anticancer drug candidates that have the potential to modulate both epigenetic and non-epigenetic pathways. HDAC inhibitors belong to diverse groups and have showed success to a greater extent against diverse diseases like cancer, acquired immune deficiency syndrome (AIDS), diabetes, neurodegeneration, etc. HDAC inhibitors influence only 2 % of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arnold NB, Arkus N, Gunn J, Korc M (2007) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces growth inhibition and enhances gemcitabine-induced cell death in pancreatic cancer. Clin Cancer Res 13:18–26

    Article  CAS  PubMed  Google Scholar 

  • Baradari V, Huether A, Hopfner M, Schuppan D, Scherubl H (2006) Antiproliferative and proapoptotic effects of histone deacetylase inhibitors on gastrointestinal neuroendocrine tumor cells. Endocr Relat Cancer 13:1237–1250

    Article  CAS  PubMed  Google Scholar 

  • Bergadà L, Sorolla A, Yeramian A, Eritja N, Mirantes C, Matias-Guiu X et al (2013) Combination of Vorinostat and caspase-8 inhibition exhibits high anti-tumoral activity on endometrial cancer cells. Mol Oncol 7:763–775

    Article  PubMed  Google Scholar 

  • Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784

    Article  CAS  PubMed  Google Scholar 

  • Bracker TU, Sommer A, Fichtner I, Faus H, Haendler B, Hess-Stumpp H (2009) Efficacy of MS-275, a selective inhibitor of class I histone deacetylases, in human colon cancer models. Int J Oncol 35:909–920

    CAS  PubMed  Google Scholar 

  • Butler LM, Zhou X, Xu WS, Scher HI, Rifkind RA, Marks PA et al (2002) The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc Natl Acad Sci U S A 99:11700–11705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen X, Radany EH, Wong P, Ma S, Wu K, Wang B et al (2013) Suberoylanilide hydroxamic acid induces hypersensitivity to radiation therapy in acute myelogenous leukemia cells expressing constitutively active FLT3 mutants. PLoS One 8:e84515

    Article  PubMed Central  PubMed  Google Scholar 

  • de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749

    Article  PubMed Central  PubMed  Google Scholar 

  • Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5:981–989

    Article  CAS  PubMed  Google Scholar 

  • Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349–352

    Article  CAS  PubMed  Google Scholar 

  • Kumagai T, Wakimoto N, Yin D, Gery S, Kawamata N, Takai N et al (2007) Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (Vorinostat, SAHA) profoundly inhibits the growth of human pancreatic cancer cells. Int J Cancer 121:656–665

    Article  CAS  PubMed  Google Scholar 

  • Lakshmikanthan V, Kaddour-Djebbar I, Lewis RW, Kumar MV (2006) SAHA-sensitized prostate cancer cells to TNFalpha-related apoptosis-inducing ligand (TRAIL): mechanisms leading to synergistic apoptosis. Int J Cancer 119:221–228

    Article  CAS  PubMed  Google Scholar 

  • Luo RX, Dean DC (1999) Chromatin remodeling and transcriptional regulation. J Natl Cancer Inst 91:1288–1294

    Article  CAS  PubMed  Google Scholar 

  • Ouaissi M, Sielezneff I, Silvestre R, Sastre B, Bernard JP, Lafontaine JS et al (2008) High histone deacetylase 7 (HDAC7) expression is significantly associated with adenocarcinomas of the pancreas. Ann Surg Oncol 15:2318–2328

    Article  PubMed  Google Scholar 

  • Qu W, Kang Y-d, Zhou M-s, Fu L-l, Hua Z-h, Wang L-m (2010) Experimental study on inhibitory effects of histone deacetylase inhibitor MS-275 and TSA on bladder cancer cells. Urol Oncol 28:648–654

    Google Scholar 

  • Srivastava RK, Kurzrock R, Shankar S (2010) MS-275 sensitizes TRAIL-resistant breast cancer cells, inhibits angiogenesis and metastasis, and reverses epithelial-mesenchymal transition in vivo. Mol Cancer Ther 9:3254–3266

    Article  CAS  PubMed  Google Scholar 

  • Stark K, Burger A, Wu J, Shelton P, Polin L, Li J (2013) Reactivation of estrogen receptor alpha by vorinostat sensitizes mesenchymal-like triple-negative breast cancer to aminoflavone, a ligand of the aryl hydrocarbon receptor. PLoS One 8:e74525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takai N, Ueda T, Nishida M, Nasu K, Narahara H (2006) Anticancer activity of MS-275, a novel histone deacetylase inhibitor, against human endometrial cancer cells. Anticancer Res 26:939–945

    CAS  PubMed  Google Scholar 

  • Xu J, Zhou JY, Wei WZ, Philipsen S, Wu GS (2008) Sp1-mediated TRAIL induction in chemosensitization. Cancer Res 68:6718–6726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou L, Ruvolo VR, McQueen T, Chen W, Samudio IJ, Conneely O et al (2013) HDAC inhibition by SNDX-275 (Entinostat) restores expression of silenced leukemia-associated transcription factors Nur77 and Nor1 and of key pro-apoptotic proteins in AML. Leukemia 27:1358–1368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shabir Ahmad Ganai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Ganai, S.A. (2015). HDAC Inhibitors Entinostat and Suberoylanilide Hydroxamic Acid (SAHA): The Ray of Hope for Cancer Therapy. In: Wells, R., Bond, J., Klinman, J., Masters, B., Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_503-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_503-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics