Skip to main content

Role of Chromatin Remodeling and DNA Modification in Transcriptional Regulation

  • Living reference work entry
  • First Online:
  • 371 Accesses

Synonyms

Chromatin; Chromatin modification; DNA methylation; Epigenetics; Histone modification; Imprinting; Transcriptional control

Synopsis

Control of gene expression begins with rendering DNA more or less accessible to the transcription machinery. DNA is packaged around histones and other proteins to form chromatin. Histones condense DNA but also limit its accessibility to the transcription machinery. DNA that is packaged tightly and inaccessible to transcription machinery is referred to as heterochromatin, while loosely packaged DNA that can be transcribed is termed euchromatin.

Since transcription depends upon accessible DNA, chromatin modification provides a powerful means for the cell to regulate gene expression. Indeed, chromatin state is dynamic, changing over time or due to alterations in the cell’s environment. Chromatin state varies between cell types and is one way that cells in different tissues show unique patterns of gene expression. Importantly, chromatin state is...

This is a preview of subscription content, log in via an institution.

References

  • Feil R, Fraga MF (2012) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 13:97–109

    CAS  PubMed  Google Scholar 

  • Hassan AH, Neely KE, Workman JL (2001) Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell 104:817–827

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S, Shilatifard A (2011) Histone modification: cause or cog? Trends Genet 27:389–396

    Article  CAS  PubMed  Google Scholar 

  • Koshibu K, Gräff J, Beullens M, Heitz FD, Berchtold D, Russig H, Farinelli M, Bollen M, Mansuy IM (2009) Protein phosphatase 1 regulates the histone code for long-term memory. J Neurosci 29:13079–13089

    Article  CAS  PubMed  Google Scholar 

  • Krebs AR, Karmodiya K, Lindahl-Allen M, Struhl K, Tora L (2011) SAGA and ATAC histone acetyl transferase complexes regulate distinct sets of genes and ATAC defines a class of p300-independent enhancers. Mol Cell 44:410–423

    Article  CAS  PubMed  Google Scholar 

  • Kurdistani SK, Grunstein M (2003) Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol 4:276–284

    Article  CAS  PubMed  Google Scholar 

  • Latchman D (2005) Gene regulation. Taylor & Francis Group, New York

    Google Scholar 

  • Margueron R, Trojer P, Reinberg D (2005) The key to development: interpreting the histone code? Curr Opin Genet Dev 15:163–176

    Article  CAS  PubMed  Google Scholar 

  • Mosammaparast N, Shi Y (2010) Reversal of Histone Methylation: Biochemical and Molecular Mechanisms of Histone Demethylases. Annu Rev Biochem 79:155–179

    Article  CAS  PubMed  Google Scholar 

  • Salozhin SV, Prokhorchuk EB, Georgiev GP (2005) Methylation of DNA–one of the major epigenetic markers. Biochemistry 70:525–532

    CAS  PubMed  Google Scholar 

  • Sharma VM, Tomar RS, Dempsey AE, Reese JC (2007) Histone deacetylases RPD3 and HOS2 regulate the transcriptional activation of DNA damage-inducible genes. Mol Cell Biol 27:3199–3210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shiio Y, Eisenman RN (2003) Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci USA 100:13225–13230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith CL, Peterson CL (2005) ATP-dependent chromatin remodeling. Curr Top Dev Biol 65:115–148

    Article  CAS  PubMed  Google Scholar 

  • Walsh CP, Chaillet JR, Bestor TH (1998) Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 20:116–117

    Article  CAS  PubMed  Google Scholar 

  • Watson JD et al (2008) Molecular biology of the gene, 6th edn, Pearson/Benjamin Cummings, San Francisco

    Google Scholar 

  • Williams K, Christensen J, Helin K (2011) DNA methylation: TET proteins-guardians of CpG islands? EMBO Rep 13(1):28–35

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scheherazade Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Khan, S., Hilliker, A. (2014). Role of Chromatin Remodeling and DNA Modification in Transcriptional Regulation. In: Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_39-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_39-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics