Skip to main content

TANK-Binding Kinase 1 (TBK1): Structure, Function, and Regulation

  • Living reference work entry
  • First Online:

Synopsis

Originally discovered as a kinase that interacted with the effector proteins TANK and TRAF2 in a ternary complex that could activate NF-κB, TANK-binding kinase 1 (TBK1) has since been characterized as a key regulator of substrates ranging from cell proliferation and vesicle transport to xenophagic elimination of bacteria and antiviral immune response. Also known as NAK (NF-κB-activating kinase) or T2K (TRAF2-associated kinase), TBK1 is a ubiquitously expressed 729-amino-acid serine/threonine kinase that is a noncanonical IκB kinase family member, targeting the transcription factors IRF3 and IRF7 in the type I interferon response. TBK1 is composed of an N-terminal kinase domain (KD), which contains an activation loop between subdomains VII and VIII controlling its catalytic activity, and three C-terminal regulatory domains: a ubiquitin-like domain (ULD), which interacts with the KD rather than the known ubiquitin-binding proteins and appears to be necessary for substrate...

This is a preview of subscription content, log in via an institution.

References

  • An H, Zhao W, Hou J et al (2006) SHP-2 phosphatase negatively regulates the TRIF adaptor protein-dependent type I interferon and proinflammatory cytokine production. Immunity 25:919–928

    Article  CAS  PubMed  Google Scholar 

  • Bonnard M, Mirtsos C, Suzuki S et al (2000) Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-kappaB-dependent gene transcription. EMBO J 19:4976–4985

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bowie AG, Unterholzner L (2008) Viral evasion and subversion of pattern-recognition receptor signalling. Nat Rev Immunol 8(12):911–922

    Article  CAS  PubMed  Google Scholar 

  • Burke JR, Miller KR, Wood MK, Meyers CA (1998) The multisubunit IkappaB kinase complex shows random sequential kinetics and is activated by the C-terminal domain of IkappaB-alpha. J Biol Chem 273:12041–12046

    Article  CAS  PubMed  Google Scholar 

  • Chakravarti D, LaMorte VJ, Nelson MC et al (1996) Role of CBP/P300 in nuclear receptor signalling. Nature 383:99–103

    Article  CAS  PubMed  Google Scholar 

  • Chau TL, Gioia R, Gatot JS et al (2008) Are the IKKs and IKK-related kinases TBK1 and IKK-ε similarly activated? Trends Biochem Sci 33:171–180

    Article  CAS  PubMed  Google Scholar 

  • Clark K, Peggie M, Plater L et al (2011) Novel cross-talk within the IKK family controls innate immunity. Biochem J 434:93–104

    Article  CAS  PubMed  Google Scholar 

  • Da Q, Yang X, Xu Y et al (2011) TANK-binding kinase 1 attenuates PTAP-dependent retroviral budding through targeting endosomal sorting complex required for transport-I. J Immunol 186:3023–3030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fitzgerald KA, McWhirter SM, Faia KL et al (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4:491–496

    Article  CAS  PubMed  Google Scholar 

  • Gleason CE, Ordureau A, Gourlay R et al (2011) Polyubiquitin binding to optineurin is required for optimal activation of TANK-binding kinase 1 and production of interferon β. J Biol Chem 286:35663–35674

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang J, Liu T, Xu L-G et al (2005) SIKE is an IKK epsilon/TBK1-associated suppressor of TLR3- and virus-triggered IRF-3 activation pathways. EMBO J 24:4018–4028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khai Huynh Q, Kishore N, Mathialagan S et al (2002) Kinetic mechanisms of IkappaB-related kinases (IKK) inducible IKK and TBK-1 differ from IKK-1/IKK-2 heterodimer. J Biol Chem 277:12550–12558

    Article  PubMed  Google Scholar 

  • Kishore N, Khai Huynh Q, Mathialagan S et al (2002) IKK-i and TBK-1 are enzymatically distinct from the homologous enzyme IKK-2. Comparative analysis of recombinant human IKK-i, TBK-1, and IKK-2. J Biol Chem 277:13840–13847

    Article  CAS  PubMed  Google Scholar 

  • Larabi A, Devos JM, Ng S-L et al (2013) Crystal structure and mechanism of activation of TANK-binding kinase 1. Cell Rep 3:734–746. doi:10.1016/j.celrep.2013.01.034

    Article  CAS  PubMed  Google Scholar 

  • Lin R, Heylbroeck C, Pitha PM, Hiscott J (1998) Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol Cell Biol 18:2986–2996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu F, Xia Y, Parker AS, Verma IM (2012) IKK biology. Immunol Rev 246:239–253

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma X, Helgason E, Phung QT et al (2012) Molecular basis of Tank-binding kinase 1 activation by transautophosphorylation. Proc Natl Acad Sci 109:9378–9383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McWhirter SM, Fitzgerald KA, Rosains J et al (2004) IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci U S A 101:233–238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ou YH, Torres M, Cheng T, White MA (2011) TBK1 directly engages Akt/PKB survival signaling to support oncogenic transformation. Mol Cell 41:458–470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parvatiyar K, Barber GN, Harhaj EW (2010) TAX1BP1 and A20 inhibit antiviral signaling by targeting TBK1-IKKi kinases. J Biol Chem 285:14999–15009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peet GW, Li J (1999) IKB Kinases alpha and beta show a random sequential kinetic mechanism and are inhibited by staurosporine and quercetin. J Biol Chem 274:32655–32661

    Article  CAS  PubMed  Google Scholar 

  • Perry AK, Chow EK, Goodnough JB et al (2004) Differential requirement for TANK-binding kinase-1 in type I interferon responses to toll-like receptor activation and viral infection. J Exp Med 199:1651–1658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pomerantz JL, Baltimore D (1999) NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J 18:6694–6704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma S, Tenoever BR, Grandvaux N et al (2003) Triggering the interferon antiviral response through an IKK-related pathway. Science 300:1148–1151

    Article  CAS  PubMed  Google Scholar 

  • Soulat D, Bürckstümmer T, Westermayer S et al (2008) The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. EMBO J 27:2135–2146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tilly-Kiesi M, Knudsen P, Groop L, Taskinen MR (1996) Hyperinsulinemia and insulin resistance are associated with multiple abnormalities of lipoprotein subclasses in glucose-tolerant relatives of NIDDM patients. Botnia Study Group. J Lipid Res 37:1569–1578

    CAS  PubMed  Google Scholar 

  • Tojima Y, Fujimoto A, Delhase M et al (2000) NAK is an IkappaB kinase-activating kinase. Nature 404:778–782. doi:10.1038/35008109

    Article  CAS  PubMed  Google Scholar 

  • Tu D, Zhu Z, Zhou AY et al (2013) Structure and ubiquitination-dependent activation of TANK-binding kinase 1. Cell Rep 3:747–758

    Article  CAS  PubMed  Google Scholar 

  • Wang L (2010) Mindbomb proteins are E3 ubiquitin ligases essential for TBK1-mediated antiviral activity. J Immunol 184:136.6

    Google Scholar 

  • Wang C, Chen T, Zhang J et al (2009) The E3 ubiquitin ligase Nrdp1 “preferentially” promotes TLR-mediated production of type I interferon. Nat Immunol 10:744–752

    Article  CAS  PubMed  Google Scholar 

  • Wild P, Farhan H, McEwan DG et al (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333:228–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Marion .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Marion, J. (2014). TANK-Binding Kinase 1 (TBK1): Structure, Function, and Regulation. In: Wells, R., Bond, J., Klinman, J., Masters, B., Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_374-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_374-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics