Skip to main content

The Complement System

  • Living reference work entry
  • First Online:
Molecular Life Sciences
  • 323 Accesses

Synopsis

The complement system is a central component of innate immunity and plays an important role in pathogen recognition and elimination. The complement system is composed of more than 35 soluble and membrane-bound proteins. Complement proteins are mainly synthesized by liver hepatocytes and circulate throughout the bloodstream. However, both membrane and soluble complement proteins can also be synthesized by peripheral blood leukocytes, such as neutrophils, macrophages, and dendritic cells (DCs). The complement system is an enzymatic cascade of serine proteases, which upon activation form a proteolytic cascade. Complement can be activated via the classical, lectin, and alternative pathway. The classical complement pathway can be activated by both antigen-antibody complexes and nonimmune molecules, such as beta-amyloid, prion protein, and DNA. The lectin pathway is activated by pathogen-specific sugars, such as mannose, fucose, and/or N-acetylglucosamine upon binding to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akhter E, Burlingame R, Seaman A et al (2011) Anti-C1q antibodies have higher correlation with flares of lupus nephritis than other serum markers. Lupus 20:1267–1274

    Article  CAS  PubMed  Google Scholar 

  • Barnum SR (1995) Complement biosynthesis in the central nervous system. Crit Rev Oral Biol Med 6:132–146

    Article  CAS  PubMed  Google Scholar 

  • Botto M, Lissandrini D, Sorio C, Walport MJ (1992) Biosynthesis and secretion of complement component (C3) by activated human polymorphonuclear leukocytes. J Immunol 149:1348–1355

    CAS  PubMed  Google Scholar 

  • Cao W, Bobryshev YV, Lord RSA et al (2003) Dendritic cells in the arterial wall express C1q: potential significance in atherogenesis. Cardiovasc Res 60:175–186

    Article  CAS  PubMed  Google Scholar 

  • Carney DF, Lang TJ, Shin ML (1990) Multiple signal messengers generated by terminal complement complexes and their role in terminal complement complex elimination. J Immunol 145:623–629

    CAS  PubMed  Google Scholar 

  • Castellano G, Woltman AM, Schena FP et al (2004) Dendritic cells and complement: at the cross road of innate and adaptive immunity. Mol Immunol 41:133–140

    Article  CAS  PubMed  Google Scholar 

  • Colten HR, Strunk RC, Perlmutter DH, Cole FS (1986) Regulation of complement protein biosynthesis in mononuclear phagocytes. Ciba Found Symp 118:141–154

    CAS  PubMed  Google Scholar 

  • Daha MR (2010) Role of complement in innate immunity and infections. Crit Rev Immunol 30:47–52

    Article  CAS  PubMed  Google Scholar 

  • Davies A, Simmons DL, Hale G et al (1989) CD59, an LY-6-like protein expressed in human lymphoid cells, regulates the action of the complement membrane attack complex on homologous cells. J Exp Med 170:637–654

    Article  CAS  PubMed  Google Scholar 

  • Eisen DP (2010) Mannose-binding lectin deficiency and respiratory tract infection. J Innate Immun 2:114–122

    Article  CAS  PubMed  Google Scholar 

  • Fidler KJ, Hilliard TN, Bush A et al (2009) Mannose-binding lectin is present in the infected airway: a possible pulmonary defence mechanism. Thorax 64:150–155

    Article  CAS  PubMed  Google Scholar 

  • Fraser DA, Laust AK, Nelson EL, Tenner AJ (2009) C1q differentially modulates phagocytosis and cytokine responses during ingestion of apoptotic cells by human monocytes, macrophages, and dendritic cells. J Immunol 183:6175–6185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fraser DA, Pisalyaput K, Tenner AJ (2010) C1q enhances microglial clearance of apoptotic neurons and neuronal blebs, and modulates subsequent inflammatory cytokine production. J Neurochem 112:733–743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gasque P, Fontaine M, Morgan BP (1995) Complement expression in human brain. Biosynthesis of terminal pathway components and regulators in human glial cells and cell lines. J Immunol 154:4726–4733

    CAS  PubMed  Google Scholar 

  • Gomi K, Tokue Y, Kobayashi T et al (2004) Mannose-binding lectin gene polymorphism is a modulating factor in repeated respiratory infections. Chest 126:95–99

    Article  CAS  PubMed  Google Scholar 

  • Hamvas RMJ, Johnson M, Vlieger AM et al (2005) Role for mannose binding lectin in the prevention of mycoplasma infection. Infect Immun 73:5238–5240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • HøgÃ¥sen AK, Würzner R, Abrahamsen TG, Dierich MP (1995) Human polymorphonuclear leukocytes store large amounts of terminal complement components C7 and C6, which may be released on stimulation. J Immunol 154:4734–4740

    PubMed  Google Scholar 

  • Holmskov U, Thiel S, Jensenius JC (2003) Collections and ficolins: humoral lectins of the innate immune defense. Annu Rev Immunol 21:547–578

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa M, Klegeris A, Maguire J, McGeer PL (2003) Expression of complement messenger RNAs and proteins by human oligodendroglial cells. Glia 42:417–423

    Article  PubMed  Google Scholar 

  • Huber-Lang M, Sarma JV, Zetoune FS et al (2006) Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med 12:682–687

    Article  CAS  PubMed  Google Scholar 

  • Jack DL, Lee ME, Turner MW et al (2005) Mannose-binding lectin enhances phagocytosis and killing of Neisseria meningitidis by human macrophages. J Leukoc Biol 77:328–336

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Cooper B, Robey FA, Gewurz H (1992) DNA binds and activates complement via residues 14–26 of the human C1q A chain. J Biol Chem 267:25597–25601

    CAS  PubMed  Google Scholar 

  • Johnson E, Hetland G (1988) Mononuclear phagocytes have the potential to synthesize the complete functional complement system. Scand J Immunol 27:489–493

    Article  CAS  PubMed  Google Scholar 

  • Jones JL, Hanson DL, Dworkin MS et al (1999) Surveillance for AIDS-defining opportunistic illnesses, 1992–1997. MMWR CDC Surveill Summ 48:1–22

    PubMed  Google Scholar 

  • Korb LC, Ahearn JM (1997) C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol 158:4525–4528

    CAS  PubMed  Google Scholar 

  • Korotzer AR, Watt J, Cribbs D et al (1995) Cultured rat microglia express C1q and receptor for C1q: implications for amyloid effects on microglia. Exp Neurol 134:214–221

    Article  CAS  PubMed  Google Scholar 

  • Kuipers S, Aerts PC, Van Dijk H (2003) Differential microorganism-induced mannose-binding lectin activation. FEMS Immunol Med Microbiol 36:33–39

    Article  CAS  PubMed  Google Scholar 

  • Lee YH, Witte T, Momot T et al (2005) The mannose-binding lectin gene polymorphisms and systemic lupus erythematosus: two case–control studies and a meta-analysis. Arthritis Rheum 52:3966–3974

    Article  CAS  PubMed  Google Scholar 

  • Li K, Fazekasova H, Wang N et al (2011) Expression of complement components, receptors and regulators by human dendritic cells. Mol Immunol 48:1121–1127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lillis AP, Greenlee MC, Mikhailenko I et al (2008) Murine low-density lipoprotein receptor-related protein 1 (LRP) is required for phagocytosis of targets bearing LRP ligands but is not required for C1q-triggered enhancement of phagocytosis. J Immunol 181:364–373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Markiewski MM, Lambris JD (2009) Unwelcome complement. Cancer Res 69:6367–6370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matthews KW, Drouin SM, Liu C et al (2004) Expression of the third complement component (C3) and carboxypeptidase N small subunit (CPN1) during mouse embryonic development. Dev Comp Immunol 28:647–655

    Article  CAS  PubMed  Google Scholar 

  • McDonald JF, Nelsestuen GL (1997) Potent inhibition of terminal complement assembly by clusterin: characterization of its impact on C9 polymerization. Biochemistry 36:7464–7473

    Article  CAS  PubMed  Google Scholar 

  • Milis L, Morris CA, Sheehan MC et al (1993) Vitronectin-mediated inhibition of complement: evidence for different binding sites for C5b-7 and C9. Clin Exp Immunol 92:114–119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miwa T, Song WC (2001) Membrane complement regulatory proteins: insight from animal studies and relevance to human diseases. Int Immunopharmacol 1:445–459

    Article  CAS  PubMed  Google Scholar 

  • Morgan BP (1999) Regulation of the complement membrane attack pathway. Crit Rev Immunol 19:173–198

    Article  CAS  PubMed  Google Scholar 

  • Müller W, Hanauske-Abel H, Loos M (1978) Biosynthesis of the first component of complement by human and guinea pig peritoneal macrophages: evidence for an independent production of the C1 subunits. J Immunol 121:1578–1584

    PubMed  Google Scholar 

  • Nagasawa S, Kobayashi C, Maki-Suzuki T et al (1985) Purification and characterization of the C3 convertase of the classical pathway of human complement system by size exclusion high-performance liquid chromatography. J Biochem 97:493–499

    CAS  PubMed  Google Scholar 

  • Nauta AJ, Trouw LA, Daha MR et al (2002) Direct binding of C1q to apoptotic cells and cell blebs induces complement activation. Eur J Immunol 32:1726–1736

    Article  CAS  PubMed  Google Scholar 

  • Neth O, Jack DL, Dodds AW et al (2000) Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect Immun 68:688–693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nguyen HX, Galvan MD, Anderson AJ (2008) Characterization of early and terminal complement proteins associated with polymorphonuclear leukocytes in vitro and in vivo after spinal cord injury. J Neuroinflammation 5:26

    Article  PubMed Central  PubMed  Google Scholar 

  • Niculescu F, Rus H (2001) Mechanisms of signal transduction activated by sublytic assembly of terminal complement complexes on nucleated cells. Immunol Res 24:191–199

    Article  CAS  PubMed  Google Scholar 

  • Niculescu F, Rus H, Shin S et al (1993) Generation of diacylglycerol and ceramide during homologous complement activation. J Immunol 150:214–224

    CAS  PubMed  Google Scholar 

  • Niculescu F, Rus H, van Biesen T, Shin ML (1997) Activation of Ras and mitogen-activated protein kinase pathway by terminal complement complexes is G protein dependent. J Immunol 158:4405–4412

    CAS  PubMed  Google Scholar 

  • Norsworthy P, Theodoridis E, Botto M et al (1999) Overrepresentation of the Fcgamma receptor type IIA R131/R131 genotype in caucasoid systemic lupus erythematosus patients with autoantibodies to C1q and glomerulonephritis. Arthritis Rheum 42:1828–1832

    Article  CAS  PubMed  Google Scholar 

  • Norsworthy PJ, Fossati-Jimack L, Cortes-Hernandez J et al (2004) Murine CD93 (C1qRp) contributes to the removal of apoptotic cells in vivo but is not required for C1q-mediated enhancement of phagocytosis. J Immunol 172:3406–3414

    Article  CAS  PubMed  Google Scholar 

  • Okuda T (1991) Murine polymorphonuclear leukocytes synthesize and secrete the third component and factor B of complement. Int Immunol 3:293–296

    Article  CAS  PubMed  Google Scholar 

  • Peerschke EI, Ghebrehiwet B (2007) The contribution of gC1qR/p33 in infection and inflammation. Immunobiology 212:333–342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pickering MC, Botto M, Taylor PR et al (2000) Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv Immunol 76:227–324

    Article  CAS  PubMed  Google Scholar 

  • Podack ER (1984) Molecular composition of the tubular structure of the membrane attack complex of complement. J Biol Chem 259:8641–8647

    CAS  PubMed  Google Scholar 

  • Polotsky VY, Belisle JT, Mikusova K et al (1997) Interaction of human mannose-binding protein with Mycobacterium avium. J Infect Dis 175:1159–1168

    Article  CAS  PubMed  Google Scholar 

  • Porter RR, Reid KB (1979) Activation of the complement system by antibody-antigen complexes: the classical pathway. Adv Protein Chem 33:1–71

    Article  CAS  PubMed  Google Scholar 

  • Reid KB, Porter RR (1976) Subunit composition and structure of subcomponent C1q of the first component of human complement. Biochem J 155:19–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rogers J, Cooper NR, Webster S et al (1992) Complement activation by beta-amyloid in Alzheimer disease. Proc Natl Acad Sci U S A 89:10016–10020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roy S, Knox K, Segal S et al (2002) MBL genotype and risk of invasive pneumococcal disease: a case–control study. Lancet 359:1569–1573. doi:10.1016/S0140-6736(02)08516-1, S0140-6736(02)08516-1 [pii]\n

    Article  CAS  PubMed  Google Scholar 

  • Rubinfeld H, Seger R (2005) The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol 31:151–174

    Article  CAS  PubMed  Google Scholar 

  • Schwaeble W, Schafer MK, Petry F et al (1995) Follicular dendritic cells, interdigitating cells, and cells of the monocyte-macrophage lineage are the C1q-producing sources in the spleen. Identification of specific cell types by in situ hybridization and immunohistochemical analysis. J Immunol 155:4971–4978

    CAS  PubMed  Google Scholar 

  • Sim RB, Kishore U, Villiers CL et al (2007) C1q binding and complement activation by prions and amyloids. Immunobiology 212:355–362

    Article  CAS  PubMed  Google Scholar 

  • Skattum L, Van Deuren M, Van Der Poll T, Truedsson L (2011) Complement deficiency states and associated infections. Mol Immunol 48:1643–1655

    Article  CAS  PubMed  Google Scholar 

  • SmykaÅ‚-Jankowiak K, Niemir ZI, Polcyn-Adamczak M (2011) Do circulating antibodies against C1q reflect the activity of lupus nephritis? Pol Arch Med Wewn 121:287–294

    PubMed  Google Scholar 

  • Van Schravendijk MR, Dwek RA (1982) Interaction of C1q with DNA. Mol Immunol 19:1179–1187

    Article  PubMed  Google Scholar 

  • Vegh Z, Kew RR, Gruber BL, Ghebrehiwet B (2006) Chemotaxis of human monocyte-derived dendritic cells to complement component C1q is mediated by the receptors gC1qR and cC1qR. Mol Immunol 43:1402–1407

    Article  CAS  PubMed  Google Scholar 

  • Velazquez P, Cribbs DH, Poulos TL, Tenner AJ (1997) Aspartate residue 7 in amyloid beta-protein is critical for classical complement pathway activation: implications for Alzheimer’s disease pathogenesis. Nat Med 3:77–79

    Article  CAS  PubMed  Google Scholar 

  • Walport MJ (2001a) Complement. Second of two parts. N Engl J Med 344:1140–1144

    Article  CAS  PubMed  Google Scholar 

  • Walport MJ (2001b) Complement-first of two parts. N Engl J Med 344:1058–1066

    Article  CAS  PubMed  Google Scholar 

  • Wiedmer T, Ando B, Sims PJ (1987) Complement C5b-9-stimulated platelet secretion is associated with a Ca2+ -initiated activation of cellular protein kinases. J Biol Chem 262:13674–13681

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Galvan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Galvan, M. (2014). The Complement System. In: Wells, R., Bond, J., Klinman, J., Masters, B., Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_287-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_287-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics