Skip to main content

The Mammalian Solute Carrier Families SLC2 and SLC5: Facilitative and Active Transport of Hexoses and Polyols

  • Living reference work entry
  • First Online:
Molecular Life Sciences
  • 547 Accesses

Synonyms

Glucose homeostasis; Glucose transport facilitator; Glucose transporter; GLUT; Inherited disorders; Knockout mice; SGLT; Sodium-dependent glucose transport; Symporter; Type 2 diabetes; Uric acid

Synopsis

This entry summarizes the principal characteristics of sodium-dependent, active (SGLT; Wright et al. 2011) and facilitative (GLUT; Augustin 2010) sugar transport in mammalian cells, primarily focusing on the human transporters. Emphasis is placed on the physiology of such transporters, based on inherited disorders and syndromes in humans and the phenotypic characteristics of genetically modified mice.

Introduction

Glucose represents the major energy source of mammalian cells. Due to its hydrophilic nature, glucose requires specific transporters in order to cross cellular membranes. Such transport is, in the case of glucose and also other monosaccharides, mediated by energy-coupled as well as facilitative mechanisms represented by protein families of sodium-driven sugar...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Augustin R (2010) The protein family of glucose transport facilitators: it’s not only about glucose after all. IUBMB Life 62:315–333

    CAS  PubMed  Google Scholar 

  • Bersudsky Y, Shaldubina A, Agam G, Berry GT, Belmaker RH (2008) Homozygote inositol transporter knockout mice show a lithium-like phenotype. Bipolar Disord 10:453–459

    Article  CAS  PubMed  Google Scholar 

  • Bianchi L, Diez-Sampedro A (2010) A single amino acid change converts the sugar sensor SGLT3 into a sugar transporter. PLoS One 5:e10241

    Article  PubMed Central  PubMed  Google Scholar 

  • Callewaert BL, Loeys BL, Casteleyn C, Willaert A, Dewint P, De Backer J, Sedlmeier R, Simoens P, De Paepe AM, Coucke PJ (2008) Absence of arterial phenotype in mice with homozygous slc2A10 missense substitutions. Genesis 46:385–389

    Article  CAS  PubMed  Google Scholar 

  • Chao EC, Henry RR (2010) SGLT2 inhibition – a novel strategy for diabetes treatment. Nat Rev Drug Discov 9:551–559

    Article  CAS  PubMed  Google Scholar 

  • Cheng CH, Kikuchi T, Chen YH, Sabbagha NG, Lee YC, Pan HJ, Chang C, Chen YT (2009) Mutations in the SLC2A10 gene cause arterial abnormalities in mice. Cardiovasc Res 81:381–388

    Article  CAS  PubMed  Google Scholar 

  • Coady MJ, Wallendorff B, Gagnon DG, Lapointe JY (2002) Identification of a novel Na+/myo-inositol cotransporter. J Biol Chem 277:35219–35224

    Article  CAS  PubMed  Google Scholar 

  • Coucke PJ, Willaert A, Wessels MW, Callewaert B, Zoppi N, De Backer J, Fox JE, Mancini GM, Kambouris M, Gardella R, Facchetti F, Willems PJ, Forsyth R, Dietz HC, Barlati S, Colombi M, Loeys B, De Paepe A (2006) Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat Genet 38:452–457

    Article  CAS  PubMed  Google Scholar 

  • Crane RK (1960) Intestinal absorption of sugars. Physiol Rev 40:789–825

    CAS  PubMed  Google Scholar 

  • Diez-Sampedro A, Hirayama BA, Osswald C, Gorboulev V, Baumgarten K, Volk C, Wright EM, Koepsell H (2003) A glucose sensor hiding in a family of transporters. Proc Natl Acad Sci U S A 100:11753–11758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ehrenkranz JR, Lewis NG, Kahn CR, Roth J (2005) Phlorizin: a review. Diabetes Metab Res Rev 21:31–38

    Article  CAS  PubMed  Google Scholar 

  • Faham S, Watanabe A, Besserer GM, Cascio D, Specht A, Hirayama BA, Wright EM, Abramson J (2008) The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321:810–814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grempler R, Augustin R, Froehner S, Hildebrandt T, Simon E, Mark M, Eickelmann P (2012) Functional characterisation of human SGLT-5 as a novel kidney-specific sodium-dependent sugar transporter. FEBS Lett 586(3):248–53

    Google Scholar 

  • Joost HG, Thorens B (2001) The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol Membr Biol 18:247–256

    Article  CAS  PubMed  Google Scholar 

  • Jurczak MJ, Lee HY, Birkenfeld AL, Jornayvaz FR, Frederick DW, Pongratz RL, Zhao X, Moeckel GW, Samuel VT, Whaley JM, Shulman GI, Kibbey RG (2011) SGLT2 deletion improves glucose homeostasis and preserves pancreatic beta-cell function. Diabetes 60:890–898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lindquist B, Meeuwisse GW (1962) Chronic diarrhoea caused by monosaccharide malabsorption. Acta Paediatr 51:674–685

    Article  CAS  PubMed  Google Scholar 

  • Manz F, Bickel H, Brodehl J, Feist D, Gellissen K, Gescholl-Bauer B, Gilli G, Harms E, Helwig H, Nutzenadel W et al (1987) Fanconi-Bickel syndrome. Pediatr Nephrol 1:509–518

    Article  CAS  PubMed  Google Scholar 

  • Preitner F, Bonny O, Laverriere A, Rotman S, Firsov D, Da Costa A, Metref S, Thorens B (2009) Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proc Natl Acad Sci U S A 106:15501–15506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Purcell SH, Aerni-Flessner LB, Willcockson AR, Diggs-Andrews KA, Fisher SJ, Moley KH (2011) Improved insulin sensitivity by GLUT12 overexpression in mice. Diabetes 60:1478–1482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rossetti L, Smith D, Shulman GI, Papachristou D, DeFronzo RA (1987) Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest 79:1510–1515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tazawa S, Yamato T, Fujikura H, Hiratochi M, Itoh F, Tomae M, Takemura Y, Maruyama H, Sugiyama T, Wakamatsu A, Isogai T, Isaji M (2005) SLC5A9/SGLT4, a new Na + -dependent glucose transporter, is an essential transporter for mannose, 1,5-anhydro-d-glucitol, and fructose. Life Sci 76:1039–1050

    Article  CAS  PubMed  Google Scholar 

  • Turk E, Zabel B, Mundlos S, Dyer J, Wright EM (1991) Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature 350:354–356

    Article  CAS  PubMed  Google Scholar 

  • Uldry M, Thorens B (2004) The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch 447:480–489

    Article  CAS  PubMed  Google Scholar 

  • van den Heuvel LP, Assink K, Willemsen M, Monnens L (2002) Autosomal recessive renal glucosuria attributable to a mutation in the sodium glucose cotransporter (SGLT2). Hum Genet 111:544–547

    Article  PubMed  Google Scholar 

  • Wright EM, Loo DD, Hirayama BA (2011) Biology of human sodium glucose transporters. Physiol Rev 91:733–794

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Augustin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Augustin, R., Mayoux, E. (2014). The Mammalian Solute Carrier Families SLC2 and SLC5: Facilitative and Active Transport of Hexoses and Polyols. In: Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_188-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_188-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics