Skip to main content

Regulation of Genetic Element Mobility

  • Living reference work entry
  • First Online:
  • 492 Accesses

Synopsis

Mobilization of genetic elements is typically a highly regulated process. Mobile elements must be active enough to maintain presence within a host, yet not move so frequently that they harm the host. Mobilization can be coordinated with cellular metabolism and timed to coincide with specific cellular events. Expression of recombinase genes is a key step for the activation of mobility; however, there are additional factors that modulate recombinase activity. The formation of nucleoprotein complexes that are capable of DNA strand exchange is also a key event that is heavily regulated. Once a functional nucleoprotein complex is formed, each intermediate step in the recombination process often increases the stability of the complex, driving reactions toward completion. The process of target DNA selection is also regulated in certain genetic elements. Transposons move between sites that lack DNA homology, and some can select specific sites within the target DNA to insert into....

This is a preview of subscription content, log in via an institution.

References

  • Barabas O, Ronning DR, Guynet C, Hickman AB, Ton-Hoang B, Chandler M, Dyda F (2008) Mechanism of IS200/IS605 family DNA transposases: activation and transposon-directed target site selection. Cell 132:208–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baranov PV, Fayet O, Hendrix RW, Atkins JF (2006) Recoding in bacteriophages and bacterial IS elements. Trends Genet 22:174–181

    Article  CAS  PubMed  Google Scholar 

  • Bire S, Casteret S, Arnaoty A, Piegu B, Lecomte T, Bigot Y (2013) Transposase concentration controls transposition activity: myth or reality? Gene 530:165–171

    Article  CAS  PubMed  Google Scholar 

  • Bonen L, Vogel J (2001) The ins and outs of group II introns. Trends Genet 17:322–331

    Article  CAS  PubMed  Google Scholar 

  • Cambray G, Guerout AM, Mazel D (2010) Integrons. Annu Rev Genet 44:141–166

    Article  CAS  PubMed  Google Scholar 

  • Craig NL (1997) Target site selection in transposition. Annu Rev Biochem 66:437–474

    Article  CAS  PubMed  Google Scholar 

  • Grindley ND, Whiteson KL, Rice PA (2006) Mechanisms of site-specific recombination. Annu Rev Biochem 75:567–605

    Article  CAS  PubMed  Google Scholar 

  • Gueguen E, Rousseau P, Duval-Valentin G, Chandler M (2005) The transpososome: control of transposition at the level of catalysis. Trends Microbiol 13:543–549

    Article  CAS  PubMed  Google Scholar 

  • Kleckner N, Chalmers RM, Kwon D, Sakai J, Bolland S (1996) Tn10 and IS10 transposition and chromosome rearrangements: mechanism and regulation in vivo and in vitro. Curr Top Microbiol Immunol 204:49–82

    CAS  PubMed  Google Scholar 

  • Lipkow K, Buisine N, Lampe DJ, Chalmers R (2004) Early intermediates of mariner transposition: catalysis without synapsis of the transposon ends suggests a novel architecture of the synaptic complex. Mol Cell Biol 24:8301–8311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lohe AR, Timmons C, Beerman I, Lozovskaya ER, Hartl DL (2000) Self-inflicted wounds, template-directed gap repair and a recombination hotspot. Effects of the mariner transposase. Genetics 154:647–656

    CAS  PubMed Central  PubMed  Google Scholar 

  • Merkulov GV, Lawler JF Jr, Eby Y, Boeke JD (2001) Ty1 proteolytic cleavage sites are required for transposition: all sites are not created equal. J Virol 75:638–644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagy Z, Chandler M (2004) Regulation of transposition in bacteria. Res Microbiol 155:387–398

    Article  CAS  PubMed  Google Scholar 

  • Peters JE, Craig NL (2001) Tn7: smarter than we thought. Nat Rev Mol Cell Biol 2:806–814

    Article  CAS  PubMed  Google Scholar 

  • Reznikoff WS (1993) The Tn5 transposon. Annu Rev Microbiol 47:945–963

    Article  CAS  PubMed  Google Scholar 

  • Reznikoff WS (2003) Tn5 as a model for understanding DNA transposition. Mol Microbiol 47:1199–1206

    Article  CAS  PubMed  Google Scholar 

  • Weinreich MD, Reznikoff WS (1992) Fis plays a role in Tn5 and IS50 transposition. J Bacteriol 174:4530–4537

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph E. Peters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Parks, A.R., Peters, J.E. (2014). Regulation of Genetic Element Mobility. In: Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_173-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_173-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics