Skip to main content

Mobile DNA: Mechanisms, Utility, and Consequences

  • Living reference work entry
  • First Online:
Molecular Life Sciences
  • 726 Accesses

Synopsis

Mobile DNA elements contain sequences that enable them to physically move within or between different DNA molecules in a cell. These elements are ubiquitous in nature and are found throughout each of the three domains of life and can be found in many ectopic DNA molecules, such as viral genomes and plasmids. They can perform a variety of functions for a host organism and mobilize genetic information from one host to another. There are three major strategies that are adopted by these elements to mobilize, which include transposition, conservative site-specific recombination, and target-primed reverse transcription. Mobilization of genetic elements is typically a highly regulated process and can have some important consequences or perform vital functions for organisms.

Introduction

All organisms depend on faithful reproduction of their genetic material for their continued survival. However, in this section we will consider mobile genetic elements, segments of DNA that challenge...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aziz RK, Breitbart M, Edwards RA (2010) Transposases are the most abundant, most ubiquitous genes in nature. Nucleic Acids Res 38:4207–4217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barrangou R (2013) CRISPR-Cas systems and RNA-guided interference. Wiley Interdiscip Rev RNA 4:267–278

    Article  CAS  PubMed  Google Scholar 

  • Callinan PA, Batzer MA (2006) Retrotransposable elements and human disease. Genome Dyn 1:104–115

    Article  CAS  PubMed  Google Scholar 

  • Cambray G, Guerout AM, Mazel D (2010) Integrons. Annu Rev Genet 44:141–166

    Article  CAS  PubMed  Google Scholar 

  • Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691–703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Craig NL (1997) Target site selection in transposition. Annu Rev Biochem 66:437–474

    Article  CAS  PubMed  Google Scholar 

  • Craig NL (2002) Mobile DNA II. ASM Press, Washington, DC

    Google Scholar 

  • Curcio MJ, Derbyshire KM (2003) The outs and ins of transposition: from mu to kangaroo. Nat Rev Mol Cell Biol 4:865–877

    Article  CAS  PubMed  Google Scholar 

  • Derbyshire KM, Grindley ND (1986) Replicative and conservative transposition in bacteria. Cell 47:325–327

    Article  CAS  PubMed  Google Scholar 

  • Dyda F, Chandler M, Hickman AB (2012) The emerging diversity of transpososome architectures. Q Rev Biophys 45:493–521

    Article  CAS  PubMed  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  CAS  PubMed  Google Scholar 

  • Gregory JA, Becker EC, Jung J, Tuwatananurak I, Pogliano K (2010) Transposon assisted gene insertion technology (TAGIT): a tool for generating fluorescent fusion proteins. PLoS One 5:e8731

    Article  PubMed Central  PubMed  Google Scholar 

  • Grindley ND, Whiteson KL, Rice PA (2006) Mechanisms of site-specific recombination. Annu Rev Biochem 75:567–605

    Article  CAS  PubMed  Google Scholar 

  • Hickman AB, Li Y, Mathew SV, May EW, Craig NL, Dyda F (2000) Unexpected structural diversity in DNA recombination: the restriction endonuclease connection. Mol Cell 5:1025–1034

    Article  CAS  PubMed  Google Scholar 

  • Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632

    Article  CAS  PubMed  Google Scholar 

  • Lambowitz AM, Zimmerly S (2004) Mobile group II introns. Annu Rev Genet 38:1–35

    Article  CAS  PubMed  Google Scholar 

  • May EW, Craig NL (1996) Switching from cut-and-paste to replicative Tn7 transposition. Science 272:401–404

    Article  CAS  PubMed  Google Scholar 

  • McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36:344–355

    Google Scholar 

  • Nagy Z, Chandler M (2004) Regulation of transposition in bacteria. Res Microbiol 155:387–398

    Article  CAS  PubMed  Google Scholar 

  • Parks AR, Peters JE (2009) Tn7 elements: engendering diversity from chromosomes to episomes. Plasmid 61:1–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peters JE, Craig NL (2001) Tn7: smarter than we thought. Nat Rev Mol Cell Biol 2:806–814

    Article  CAS  PubMed  Google Scholar 

  • Plikaytis BB, Crawford JT, Shinnick TM (1998) IS1549 from Mycobacterium smegmatis forms long direct repeats upon insertion. J Bacteriol 180:1037–1043

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siguier P, Gourbeyre E, Chandler M (2014) Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev doi:10.1111/1574-6976.12067. [Epub ahead of print]

    Google Scholar 

  • Slotkin RK, Vaughn M, Borges F, Tanurdzic M, Becker JD, Feijo JA, Martienssen RA (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tropp BE (2012) Molecular biology: genes to proteins, 4th edn. Jones & Bartlett Learning, Sudbury

    Google Scholar 

  • Turlan C, Chandler M (2000) Playing second fiddle: second-strand processing and liberation of transposable elements from donor DNA. Trends Microbiol 8:268–274

    Article  CAS  PubMed  Google Scholar 

  • VandenDriessche T, Ivics Z, Izsvak Z, Chuah MK (2009) Emerging potential of transposons for gene therapy and generation of induced pluripotent stem cells. Blood 114:1461–1468

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Burgess SM (2004) Integration target site selection for retroviruses and transposable elements. Cell Mol Life Sci 61:2588–2596

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Mitra R, Atkinson PW, Hickman AB, Dyda F, Craig NL (2004) Transposition of hAT elements links transposable elements and V(D)J recombination. Nature 432:995–1001

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph E. Peters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Parks, A.R., Peters, J.E. (2014). Mobile DNA: Mechanisms, Utility, and Consequences. In: Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_157-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_157-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics