Skip to main content

Mechanism of PCNA Loading by RFC

  • Living reference work entry
  • First Online:
Molecular Life Sciences

Synopsis

Replicative polymerases achieve highly processive DNA synthesis by binding to a clamp-like processivity factor that is topologically linked to DNA. The eukaryotic processivity clamp, proliferating cell nuclear antigen (PCNA), exists mostly as a closed ring in solution. Replication factor C (RFC), a five-subunit ATP-dependent protein complex, mediates PCNA opening in solution (assembly stage) and closing onto the primer-template (disassembly stage). In the assembly stage, RFC binding to ATP causes conformational changes that trigger RFC to form a complex with PCNA. PCNA is then cracked open at one subunit interface, and both RFC and PCNA adopt an extended spiral structure with a chamber that selects for a primer-template DNA structure. Binding of RFC/PCNA to DNA triggers the disassembly stage by stimulating ATP hydrolysis. Subsequent conformational changes in RFC and PCNA lead to the closing of PCNA onto the primer-template and the dissociation of RFC.

Introduction

Proliferating...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bowman GD, O’Donnell M, Kuriyan J (2004) Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Nature 429(6993):724–730

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Levin MK, Sakato M, Zhou Y, Hingorani MM (2009) Mechanism of ATP-driven PCNA clamp loading by S. cerevisiae RFC. J Mol Biol 388(3):431–442

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fukuda K, Morioka H, Imajou S, Ikeda S, Ohtsuka E, Tsurimoto T (1995) Structure-function relationship of the eukaryotic DNA replication factor, proliferating cell nuclear antigen. J Biol Chem 270(38):22527–22534

    Article  PubMed  CAS  Google Scholar 

  • Georgescu RE, Kim SS, Yurieva O, Kuriyan J, Kong XP, O’Donnell M (2008) Structure of a sliding clamp on DNA. Cell 132(1):43–54

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gomes XV, Burgers PM (2001) ATP utilization by yeast replication factor C. I. ATP-mediated interaction with DNA and with proliferating cell nuclear antigen. J Biol Chem 276(37):34768–34775

    Article  PubMed  CAS  Google Scholar 

  • Hingorani MM, Coman MM (2002) On the specificity of interaction between the Saccharomyces cerevisiae clamp loader replication factor C and primed DNA templates during DNA replication. J Biol Chem 277(49):47213–47224

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jeruzalmi D, O’Donnell M, Kuriyan J (2001) Crystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III. Cell 106(4):429–441

    Article  PubMed  CAS  Google Scholar 

  • Johnson A, Yao NY, Bowman GD, Kuriyan J, O’Donnell M (2006) The replication factor C clamp loader requires arginine finger sensors to drive DNA binding and proliferating cell nuclear antigen loading. J Biol Chem 281(46):35531–35543

    Article  PubMed  CAS  Google Scholar 

  • Kazmirski SL, Zhao Y, Bowman GD, O’Donnell M, Kuriyan J (2005) Out-of-plane motions in open sliding clamps: molecular dynamics simulations of eukaryotic and archaeal proliferating cell nuclear antigen. Proc Natl Acad Sci U S A 102(39):13801–13806

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kelch BA, Makino DL, O’Donnell M, Kuriyan J (2011) How a DNA polymerase clamp loader opens a sliding clamp. Science 334(6063):1675–1680

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kelch BA, Makino DL, O’Donnell M, Kuriyan J (2012) Clamp loader ATPases and the evolution of DNA replication machinery. BMC Biol 10:34

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McNally R, Bowman GD, Goedken ER, O’Donnell M, Kuriyan J (2010) Analysis of the role of PCNA-DNA contacts during clamp loading. BMC Struct Biol 10:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyata T, Suzuki H, Oyama T, Mayanagi K, Ishino Y, Morikawa K (2005) Open clamp structure in the clamp-loading complex visualized by electron microscopic image analysis. Proc Natl Acad Sci U S A 102(39):13795–13800

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sakato M, O’Donnell M, Hingorani MM (2012a) A central swivel point in the RFC clamp loader controls PCNA opening and loading on DNA. J Mol Biol 416(2):163–175

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sakato M, Zhou Y, Hingorani MM (2012b) ATP binding and hydrolysis-driven rate-determining events in the RFC-catalyzed PCNA clamp loading reaction. J Mol Biol 416(2):176–191

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tainer JA, McCammon JA, Ivanov I (2010) Recognition of the ring-opened state of proliferating cell nuclear antigen by replication factor C promotes eukaryotic clamp-loading. J Am Chem Soc 132(21):7372–7378

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Trakselis MA, Alley SC, Abel-Santos E, Benkovic SJ (2001) Creating a dynamic picture of the sliding clamp during T4 DNA polymerase holoenzyme assembly by using fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 98(15):8368–8375

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Turner J, Hingorani MM, Kelman Z, O’Donnell M (1999) The internal workings of a DNA polymerase clamp-loading machine. EMBO J 18(3):771–783

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yao NY, O’Donnell M (2012) The RFC clamp loader: structure and function. Subcell Biochem 62:259–279

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhou Y, Hingorani MM (2012) Impact of individual PCNA-DNA contacts on clamp loading and function on DNA. J Biol Chem 287(42):35370–35381

    Google Scholar 

  • Zhuang Z, Yoder BL, Burgers PM, Benkovic SJ (2006) The structure of a ring-opened proliferating cell nuclear antigen-replication factor C complex revealed by fluorescence energy transfer. Proc Natl Acad Sci U S A 103(8):2546–2551

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir M. Hamdan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Oke, M., Zaher, M.S., Hamdan, S.M. (2014). Mechanism of PCNA Loading by RFC. In: Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_137-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_137-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics