Skip to main content

DNA Polymerase III Structure

  • Living reference work entry
  • First Online:
Molecular Life Sciences
  • 503 Accesses

Synopsis

By itself, the polymerase catalytic subunit of the DNA polymerase III holoenzyme (Pol III HE), α, exhibits no special properties that hint of the Pol III HE’s high catalytic efficiency, accuracy, and enormous processivity. These properties are gained by association with other proteins through a series of distinct protein interaction domains. A PHP domain at the N-terminus of Pol III α binds the proofreading subunit, ε. A typical Mg++-dependent polymerase catalytic domain has a fold similar to the DNA polymerase β (Pol X family). Adjacent to the polymerase domain is the β-binding domain. Interaction of this domain with the β2 sliding clamp processivity factor, together with an ε−β2interaction, provides the primary determinants of the enzyme’s processivity. The C-terminus contains two domains, one an OB fold that may bind single-stranded DNA and a τ-binding domain that binds the τ-subunit of the DnaX complex. X-ray crystal structures of Pol III α in the apoenzyme form, bound...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aravind L, Koonin EV (1998) Phosphoesterase domains associated with DNA polymerases of diverse origins. Nucleic Acids Res 26:3746–3752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bailey S, Wing RA, Steitz TA (2006) The structure of T. aquaticus DNA polymerase III is distinct from eukaryotic replicative DNA polymerases. Cell 126:893–904

    Article  CAS  PubMed  Google Scholar 

  • Banos B, Lazaro JM, Villar L, Salas M, De Vega M (2008) Editing of misaligned 3′-termini by an intrinsic 3′-5′ exonuclease activity residing in the PHP domain of a family X DNA polymerase. Nucleic Acids Res 36:5736–5749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barnes MH, Leo CJ, Brown NC (1998) DNA polymerase III of Gram-positive eubacteria is a zinc metalloprotein conserving an essential finger-like domain. Biochemistry 37:15254–15260

    Article  CAS  PubMed  Google Scholar 

  • Barros T, Guenther J, Kelch B, Anaya J, Prabhakar A, O’Donnell M, Kuriyan J, Lamers MH (2013) A structural role for the PHP domain in E. coli DNA polymerase III. BMC Struct Biol 13:8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blasius M, Shevelev I, Jolivet E, Sommer S, Hübscher U (2006) DNA polymerase X from Deinococcus radiodurans possesses a structure-modulated 3′ → 5′ exonuclease activity involved in radioresistance. Mol Microbiol 60:165–176

    Article  CAS  PubMed  Google Scholar 

  • Bierne H, Vilette D, Ehrlich SD, Michel B (1997) Isolation of a dnaE mutation which enhances recA independent homologous recombination in the Escherichia coli chromosome. Mol Microbiol 24:1225–1234

    Article  CAS  PubMed  Google Scholar 

  • Dalrymple BP, Kongsuwan K, Wijffels G, Dixon NE, Jennings PA (2001) A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems. Proc Natl Acad Sci U S A 98:11627–11632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doherty AJ, Serpell LC, Ponting CP (1996) The helix-hairpin-helix DNA-binding motif: a structural basis for non-sequence-specific recognition of DNA. Nucleic Acids Res 24:2488–2497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dohrmann PR, McHenry CS (2005) A bipartite polymerase-processivity factor interaction: only the internal β binding site of the α subunit is required for processive replication by the DNA polymerase III holoenzyme. J Mol Biol 350:228–239

    Article  CAS  PubMed  Google Scholar 

  • Dohrmann PR, Manhart CM, Downey CD, McHenry CS (2011) The rate of polymerase release upon filing the gap between Okazaki fragments is inadequate to support cycling during lagging strand synthesis. J Mol Biol 414:15–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Evans TC Jr, Martin D, Kolly R, Panne D, Sun L, Ghosh I, Chen L, Benner J, Liu XQ, Xu MQ (2000) Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J Biol Chem 275:9091–9094

    Article  CAS  PubMed  Google Scholar 

  • Evans RJ, Davies DR, Bullard JM, Christensen J, Green LS, Guiles JW, Pata JD, Ribble WK, Janjic N, Jarvis TC (2008) Structure of polC reveals unique DNA binding and fidelity determinants. Proc Natl Acad Sci U S A 105:20695–20700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fijalkowska IJ, Schaaper RM (1993) Antimutator mutations in the α subunit of Escherichia coli DNA polymerase III identification of the responsible mutations and alignment with other DNA polymerases. Genetics 134:1039–1044

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gulbis JM, Kazmirski SL, Finkelstein J, Kelman Z, O’Donnell ME, Kuriyan J (2004) Crystal structure of the chi:psi subassembly of the Escherichia coli DNA polymerase clamp-loader complex. Eur J Biochem 271:439–449

    Article  CAS  PubMed  Google Scholar 

  • Hiratsuka K, Reha-Krantz LJ (2000) Identification of Escherichia coli dnaE (polC) mutants with altered sensitivity to 2′,3′-dideoxyadenosine. J Bacteriol 182:3942–3947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jergic S, Ozawa K, Williams NK, Su XC, Scott DD, Hamdan SM, Crowther JA, Otting G, Dixon NE (2007) The unstructured C-terminus of the Ï„ subunit of Escherichia coli DNA polymerase III holoenzyme is the site of interaction with the α subunit. Nucleic Acids Res 35:2813–2824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jergic S, Horan NP, Elshenawy MM, Mason CE, Urathamakul T, Ozawa K, Robinson A, Goudsmits JM, Wang Y, Pan X, Beck JL, van Oijen AM, Huber T, Hamdan SM, Dixon NE (2013) A direct proofreader-clamp interaction stabilizes the Pol III replicase in the polymerization mode. EMBO J 32:1322–1333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim DR, McHenry CS (1996a) Biotin tagging deletion analysis of domain limits involved in protein-macromolecular interactions: mapping the Ï„ binding domain of the DNA polymerase III α subunit. J Biol Chem 271:20690–20698

    Article  CAS  PubMed  Google Scholar 

  • Kim DR, McHenry CS (1996b) Identification of the β-binding domain of the α subunit of Escherichia coli polymerase III holoenzyme. J Biol Chem 271:20699–20704

    Article  CAS  PubMed  Google Scholar 

  • Kim DR, Pritchard AE, McHenry CS (1997) Localization of the active site of the α subunit of the Escherichia coli DNA polymerase III holoenzyme. J Bacteriol 179:6721–6728

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lamers MH, Georgescu RE, Lee SG, O’Donnell M, Kuriyan J (2006) Crystal structure of the catalytic α subunit of E. coli replicative DNA polymerase III. Cell 126:881–892

    Article  CAS  PubMed  Google Scholar 

  • Leu FP, Georgescu R, O’Donnell ME (2003) Mechanism of the E. coli Ï„ processivity switch during lagging-strand synthesis. Mol Cell 11:315–327

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Lin J, Steitz TA (2013) Structure of the Pol III α-Ï„(c)-DNA complex suggests an atomic model of the replisome. Structure 21:658–664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maki H, Mo JY, Sekiguchi M (1991) A strong mutator effect caused by an amino acid change in the α subunit of DNA polymerase III of Escherichia coli. J Biol Chem 266:5055–5061

    CAS  PubMed  Google Scholar 

  • Marceau AH, Bahng S, Massoni SC, George NP, Sandler SJ, Marians KJ, Keck JL (2011) Structure of the SSB-DNA polymerase III interface and its role in DNA replication. EMBO J 30:4236–4247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McHenry CS (2011) DNA replicases from a bacterial perspective. Annu Rev Biochem 80:403–436

    Article  CAS  PubMed  Google Scholar 

  • Nakane S, Nakagawa N, Kuramitsu S, Masui R (2009) Characterization of DNA polymerase X from Thermus thermophilus HB8 reveals the POLXc and PHP domains are both required for 3′–5′ exonuclease activity. Nucleic Acids Res 37:2037–2052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Naue N, Fedorov R, Pich A, Manstein DJ, Curth U (2010) Site-directed mutagenesis of the χ subunit of DNA polymerase III and single-stranded DNA-binding protein of E. coli reveals key residues for their interaction. Nucleic Acids Res 39:1398–1407

    Article  PubMed Central  PubMed  Google Scholar 

  • Oller AR, Schaaper R (1994) Spontaneous mutation in Escherichia coli containing the DnaE911 DNA polymerase antimutator allele. Genetics 138:263–270

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ozawa K, Horan NP, Robinson A, Yagi H, Hill FR, Jergic S, Xu ZQ, Loscha KV, Li N, Tehei M, Oakley AJ, Otting G, Huber T, Dixon NE (2013) Proofreading exonuclease on a tether: the complex between the E. coli DNA polymerase III subunits alpha, epsilon, theta and beta reveals a highly flexible arrangement of the proofreading domain. Nucleic Acids Res 41:5354–5367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pascal JM, O’Brien PJ, Tomkinson AE, Ellenberger T (2004) Human DNA ligase I completely encircles and partially unwinds nicked DNA. Nature 432:473–478

    Article  CAS  PubMed  Google Scholar 

  • Pritchard AE, McHenry CS (1999) Identification of the acidic residues in the active site of DNA polymerase III. J Mol Biol 285:1067–1080

    Article  CAS  PubMed  Google Scholar 

  • Reems JA, Wood S, McHenry CS (1995) Escherichia coli DNA polymerase III holoenzyme subunits α, β and γ directly contact the primer template. J Biol Chem 270:5606–5613

    Article  CAS  PubMed  Google Scholar 

  • Sanders GM, Dallmann HG, McHenry CS (2010) Reconstitution of the B. subtilis replisome with 13 proteins including two distinct replicases. Mol Cell 37:273–281

    Article  CAS  PubMed  Google Scholar 

  • Sawaya MR, Prasad R, Wilson SH, Kraut J, Pelletier H (1997) Crystal structures of human DNA polymerase β complexed with gapped and nicked DNA: evidence for an induced fit mechanism. Biochemistry 36:11205–11215

    Article  CAS  PubMed  Google Scholar 

  • Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL (2008) SSB as an organizer/mobilizer of genome maintenance complexes. Crit Rev Biochem Mol Biol 43:289–318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simonetta KR, Kazmirski SL, Goedken ER, Cantor AJ, Kelch BA, McNally R, Seyedin SN, Makino DL, O’Donnell M, Kuriyan J (2009) The mechanism of ATP-dependent primer-template recognition by a clamp loader complex. Cell 137:659–671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stano NM, Chen J, McHenry CS (2006) A coproofreading Zn(2+)-dependent exonuclease within a bacterial replicase. Nat Struct Mol Biol 13:458–459

    Article  CAS  PubMed  Google Scholar 

  • Strauss BS, Roberts R, Francis L, Pouryazdanparast P (2000) Role of the dinB gene product in spontaneous mutation in Escherichia coli with an impaired replicative polymerase. J Bacteriol 182:6742–6750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Su XC, Jergic S, Keniry MA, Dixon NE, Otting G (2007) Solution structure of domains IVa and V of the Ï„ subunit of Escherichia coli DNA polymerase III and interaction with the α subunit. Nucleic Acids Res 35:2825–2832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Teplyakov A, Obmolova G, Khil PP, Howard AJ, Camerini-Otero RD, Gilliland GL (2003) Crystal structure of the Escherichia coli YcdX protein reveals a trinuclear zinc active site. Proteins 51:315–318

    Article  CAS  PubMed  Google Scholar 

  • Theobald DL, Mitton-Fry RM, Wuttke DS (2003) Nucleic acid recognition by OB-fold proteins. Annu Rev Biophys Biomol Struct 32:115–133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toste RA, Holding AN, Kent H, Lamers MH (2013) Architecture of the Pol III-clamp-exonuclease complex reveals key roles of the exonuclease subunit in processive DNA synthesis and repair. EMBO J 32:1334–1343

    Article  Google Scholar 

  • Vandewiele D, Fernandez de Henestrosa AR, Timms AR, Bridges BA, Woodgate R (2002) Sequence analysis and phenotypes of five temperature sensitive mutator alleles of dnaE, encoding modified alpha-catalytic subunits of Escherichia coli DNA polymerase III holoenzyme. Mutat Res 499:85–95

    Article  CAS  PubMed  Google Scholar 

  • Wieczorek A, McHenry CS (2006) The NH(2)-terminal php domain of the α subunit of the E. coli replicase binds the ε proofreading subunit. J Biol Chem 281:12561–12567

    Article  CAS  PubMed  Google Scholar 

  • Wing RA (2010) Structural studies of the prokaryotic replisome. Thesis/Dissertation, Yale University, p 170

    Google Scholar 

  • Wing RA, Bailey S, Steitz TA (2008) Insights into the replisome from the structure of a ternary complex of the DNA polymerase III α-subunit. J Mol Biol 382:859–869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles McHenry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

McHenry, C. (2014). DNA Polymerase III Structure. In: Wells, R., Bond, J., Klinman, J., Masters, B., Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_131-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_131-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics