Skip to main content

Mitochondrial Genomes of Excavata

  • Living reference work entry
  • First Online:
  • 487 Accesses

Synopsis

Supergroup Excavata comprises a variety of biflagellated aerobic and anaerobic protists whose defining characteristic is a central grooved cytostome (cell mouth). Of all the eukaryotic supergroups, excavates exhibit the widest variety of mitochondrial genome forms and gene content. One group, the jakobids, possesses the most ancestral (least derived) mitochondrial genome yet characterized: a circular-mapping DNA containing the largest known mitochondrial gene set and displaying bacterial operon-like gene arrangements and expression signals. At the other extreme, certain excavates have lost mtDNA entirely. One excavate phylum, Euglenozoa, contains three well-delineated lineages: kinetoplastids, diplonemids, and euglenids. Some kinetoplastids, including many parasitic genera such as Trypanosoma(the causative agent of African sleeping sickness), have a complex kinetoplast DNA that consists of interlocked mass of maxicircles and minicircles. Maxicircles correspond to the...

This is a preview of subscription content, log in via an institution.

References

  • Akhmatova A, Voncken F, Van Alen T, Van Hoek A, Boxma B, Vogels G, Veenhuis M, Hackstein JHP (1998) A hydrogenosome with a genome. Nature 396:527–528

    Article  Google Scholar 

  • Aphasizhev R, Aphasizheva I (2011) Mitochondrial RNA processing in trypanosomes. Res Microbiol 162:655–663

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Flegontov P, Gray MW, Burger G, Lukeš J (2011) Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa? Curr Genet 57:225–232

    Article  PubMed  CAS  Google Scholar 

  • Gray MW, Lang BF, Burger G (2004) Mitochondria in protists. Annu Rev Genet 38:477–524

    Article  PubMed  CAS  Google Scholar 

  • Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AGB, Roger AG (2009) Phylogenetic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci U S A 106:3859–3864

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jensen RE, Englund PT (2012) Network News: The replication of kinetoplast DNA. Ann Rev Microbiol 66:473–491

    Article  CAS  Google Scholar 

  • Lai D-H, Hashimi H, Lun Z-R, Ayala FJ, Lukeš J (2008) Adaptation of Trypanosoma brucei to gradual loss of kinetoplast DNA: T. equiperdum and T. evansi are petite mutants of T. brucei. Proc Natl Acad Sci U S A 105:1999–2004

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lang BF, Burger G, O’Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387:493–497

    Article  PubMed  CAS  Google Scholar 

  • Lukeš J, Guilbride DL, Votýpka J, Zíková A, Benne R, Englund PT (2002) The kinetoplast DNA network: evolution of an improbable structure. Eukaryot Cell 1:495–502

    Article  PubMed  PubMed Central  Google Scholar 

  • Marande W, Burger G (2007) Mitochondrial DNA as a genomic jigsaw puzzle. Science 318:415

    Article  PubMed  CAS  Google Scholar 

  • Marande W, Lukeš J, Burger G (2005) Unique mitochondrial genome structure in diplonemids, the sister group of kinetoplastids. Eukaryot Cell 4:1137–1146

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Spencer DF, Gray MW (2011) Ribosomal RNA genes in Euglena gracilis mitochondrial DNA: fragmented genes in a seemingly fragmented genome. Mol Genet Genomics 285:19–31

    Article  PubMed  CAS  Google Scholar 

  • Stuart K, Schnaufer A, Ernst NL, Panigrahi AK (2005) Complex management: RNA editing in trypanosomes. Trends Biochem Sci 30:97–105

    Article  PubMed  CAS  Google Scholar 

  • Tachezy J (ed) (2008) Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. Springer-Verlag Berlin Heidelberg

    Google Scholar 

  • Vlček C, Marande W, Teijeiro S, Lukeš J, Burger G (2011) Systematically fragmented genes in a multipartite mitochondrial genome. Nucleic Acids Res 39:979–988

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius Lukeš .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Lukeš, J. (2014). Mitochondrial Genomes of Excavata. In: Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_118-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_118-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics