Skip to main content

Methods for Plant Genome Annotation

  • Living reference work entry
  • First Online:
Molecular Life Sciences

Synonyms

Functional annotation – functional description; Gene finding – gene prediction

Synopsis

Annotation is the process of identifying and describing the regions of biological interest within a genome. The location and structure of protein-coding genes is the most common form of annotation, but other types of important sequence annotation include the identification of noncoding RNAs (tRNAs, rRNAs, snoRNAs, miRNAs, siRNAs), repetitive sequences such as transposable elements, and the location of genetic markers. Functional annotation describes the biological context of gene sequences. Almost all genome annotation is performed using semiautomated computational pipelines and is subject to some degree of interpretation and error. Therefore, researchers must understand the methods used to create annotation in order to assess the quality of that annotation.

Introduction

With the increasing ease and decreasing cost of genome sequencing, new plant genome sequences are becoming available with...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mathe C, Sagot MF, Schiex T, Rouze P (2002) Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Res 30:4103–4117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Curwen V, Eyras E, Andrews TD, Clarke L, Mongin E, Searle SM, Clamp M (2004) The Ensembl automatic gene annotation system. Genome Res 14:942–950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Parra G, Bradnam K, Korf I (2007) CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23:1061–1067

    Article  CAS  PubMed  Google Scholar 

  4. Cantarel BL, Korf I, Robb SM, Parra G, Ross E, Moore B, Holt C, Sanchez Alvarado A, Yandell M (2008) MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res 18:188–196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Haas BJ, Wortman JR, Ronning CM, Hannick LI, Smith RK Jr, Maiti R, Chan AP, Yu C, Farzad M, Wu D, White O, Town CD (2005) Complete reannotation of the Arabidopsis genome: methods, tools, protocols and the final release. BMC Biol 3:7

    Article  PubMed Central  PubMed  Google Scholar 

  6. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33:W116–W120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Stein LD, Mungall C, Shu S, Caudy M, Mangone M, Day A, Nickerson E, Stajich JE, Harris TW, Arva A, Lewis S (2002) The generic genome browser: a building block for a model organism system database. Genome Res 12:1599–1610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin L. Childs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Childs, K.L. (2014). Methods for Plant Genome Annotation. In: Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_103-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_103-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics