Skip to main content

Gene Regulatory Networks in Autism

  • Living reference work entry
  • First Online:
Encyclopedia of Autism Spectrum Disorders
  • 314 Accesses

Structure

Findings from genetic studies of autism spectrum disorder (ASD) reflect a central divergence as to whether the majority of genetic risk arises from common variation that is frequent but with low penetrance, or from rare variation with a high degree of penetrance and large effect. ASD is characterized by a high degree of both genetic and phenotypic heterogeneity. Despite long-standing evidence that ASD is a highly heritable, polygenic disorder, there still remains some uncertainty about the full allelic spectrum that underlies ASD.

With the advent of next-generation sequencing technologies, researchers have focused on the contribution of de novo variation through whole exome sequencing (WES) studies and genome-wide genotyping arrays to identify rare single nucleotide variants (SNVs), insertion-deletions (indels), and copy number variants (CNVs) associated with ASD. The identification of such variation in ASD-diagnosed individuals has resulted in the discovery of dozens of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Readings

  • Bucan, M., Abrahams, B. S., Wang, K., Glessner, J. T., Herman, E. I., Sonnenblick, L. I., et al. (2009). Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility genes. PLoS Genetics, 5(6), e1000536.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cotney, J., Muhle, R. A., Sanders, S. J., Liu, L., Willsey, A. J., Niu, W., et al. (2015). The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment. Nature Communications, 6, 6404.

    Article  PubMed  PubMed Central  Google Scholar 

  • Darnell, J. C., Van Driesche, S. J., Zhang, C., Hung, K. Y., Mele, A., Fraser, C. E., et al. (2011). FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell, 146(2), 247–261.

    Article  PubMed  PubMed Central  Google Scholar 

  • De Rubeis, S., He, X., Goldberg, A. P., Poultney, C. S., Samocha, K., Cicek, A. E., et al. (2014). Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 515(7526), 209–215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong, S., Walker, M. F., Carriero, N. J., DiCola, M., Willsey, A. J., Ye, A. Y., et al. (2014). De novo insertions and deletions of predominantly paternal origin are associated with autism spectrum disorder. Cell Reports, 9(1), 16–23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaugler, T., Klei, L., Sanders, S. J., Bodea, C. A., Goldberg, A. P., Lee, A. B., et al. (2014). Most genetic risk for autism resides with common variation. Nature Genetics, 46(8), 881–885.

    Article  PubMed  PubMed Central  Google Scholar 

  • Geschwind, D. H., & State, M. W. (2015). Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurology, 14(11), 1109–1120.

    Article  PubMed  Google Scholar 

  • Iossifov, I., O’Roak, B. J., Sanders, S. J., Ronemus, M., Krumm, N., Levy, D., et al. (2014). The contribution of de novo coding mutations to autism spectrum disorder. Nature, 515(7526), 216–221.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iossifov, I., Ronemus, M., Levy, D., Wang, Z., Hakker, I., Rosenbaum, J., et al. (2012). De novo gene disruptions in children on the autistic spectrum. Neuron, 74(2), 285–299.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klei, L., Sanders, S. J., Murtha, M. T., Hus, V., Lowe, J. K., Willsey, A. J., et al. (2012). Common genetic variants, acting additively, are a major source of risk for autism. Mol Autism, 3(1), 9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, R. A., KaraMohamed, S., Sudi, J., Conrad, D. F., Brune, C., Badner, J. A., et al. (2008). Recurrent 16p11.2 microdeletions in autism. Human Molecular Genetics, 17(4), 628–638.

    Article  PubMed  Google Scholar 

  • Marshall, C. R., Noor, A., Vincent, J. B., Lionel, A. C., Feuk, L., Skaug, J., et al. (2008). Structural variation of chromosomes in autism spectrum disorder. American Journal of Human Genetics, 82(2), 477–488.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mefford, H. C., Sharp, A. J., Baker, C., Itsara, A., Jiang, Z., Buysse, K., et al. (2008). Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. The New England Journal of Medicine, 359(16), 1685–1699.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreno-De-Luca, D., Sanders, S. J., Willsey, A. J., Mulle, J. G., Lowe, J. K., Geschwind, D. H., et al. (2013). Using large clinical data sets to infer pathogenicity for rare copy number variants in autism cohorts. Molecular Psychiatry, 18(10), 1090–1095.

    Article  PubMed  Google Scholar 

  • Neale, B. M., Kou, Y., Liu, L., Ma’ayan, A., Samocha, K. E., Sabo, A., et al. (2012). Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature, 485(7397), 242–245.

    Google Scholar 

  • O’Roak, B. J., Deriziotis, P., Lee, C., Vives, L., Schwartz, J. J., Girirajan, S., et al. (2011). Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nature Genetics, 43(6), 585–589.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Roak, B. J., Vives, L., Girirajan, S., Karakoc, E., Krumm, N., Coe, B. P., et al. (2012). Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature, 485(7397), 246–250.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinto, D., Delaby, E., Merico, D., Barbosa, M., Merikangas, A., Klei, L., et al. (2014). Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. American Journal of Human Genetics, 94(5), 677–694.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinto, D., Pagnamenta, A. T., Klei, L., Anney, R., Merico, D., Regan, R., et al. (2010). Functional impact of global rare copy number variation in autism spectrum disorders. Nature, 466(7304), 368–372.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saha, S., Barnett, A. G., Foldi, C., Burne, T. H., Eyles, D. W., Buka, S. L., et al. (2009). Advanced paternal age is associated with impaired neurocognitive outcomes during infancy and childhood. PLoS Medicine, 6(3), e40.

    Article  PubMed  Google Scholar 

  • Sanders, S. J., Ercan-Sencicek, A. G., Hus, V., Luo, R., Murtha, M. T., Moreno-De-Luca, D., et al. (2011). Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron, 70(5), 863–885.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanders, S. J., He, X., Willsey, A. J., Ercan-Sencicek, A. G., Samocha, K. E., Cicek, A. E., et al. (2015). Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci. Neuron, 87(6), 1215–1233.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J., Willsey, A. J., et al. (2012). De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 485(7397), 237–241.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T., et al. (2007). Strong association of de novo copy number mutations with autism. Science, 316(5823), 445–449.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugathan, A., Biagioli, M., Golzio, C., Erdin, S., Blumenthal, I., Manavalan, P., et al. (2014). CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proceedings of the National Academy of Sciences of the United States of America, 111(42), E4468–E4477.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiss, L. A., Shen, Y., Korn, J. M., Arking, D. E., Miller, D. T., Fossdal, R., et al. (2008). Association between microdeletion and microduplication at 16p11.2 and autism. The New England Journal of Medicine, 358(7), 667–675.

    Article  PubMed  Google Scholar 

  • Willsey, A. J., Sanders, S. J., Li, M., Dong, S., Tebbenkamp, A. T., Muhle, R. A., et al. (2013). Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell, 155(5), 997–1007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zoghbi, H. Y., & Bear, M. F. (2012). Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harbor Perspectives in Biology, 4(3), a009886.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melody Oliphant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Oliphant, M., Fernandez, T. (2017). Gene Regulatory Networks in Autism. In: Volkmar, F. (eds) Encyclopedia of Autism Spectrum Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6435-8_102153-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6435-8_102153-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6435-8

  • Online ISBN: 978-1-4614-6435-8

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics