Skip to main content

Zebrafish Models

  • Living reference work entry
  • First Online:
Encyclopedia of Autism Spectrum Disorders

Definition

In recent years, large-scale human genetics studies have led to considerable advances in our understanding of the biology of autism spectrum disorders (ASD). In particular, these studies have resulted in the identification of a growing list of ASD risk genes that are beginning to converge on common biological mechanisms (De Rubeis et al. 2014; Iossifov et al. 2014; Sanders et al. 2015). At the same time, scientists now face the challenge of leveraging these genetic findings to elucidate the neural circuit mechanisms underlying ASD and to identify novel pharmacotherapies that selectively target these mechanisms. Here, scientists have utilized model systems to advance from risk gene discovery to the elucidation of basic neurobiological mechanisms. These systems include mouse “knockout” models, in which the function of a particular risk gene is disrupted, as well as human induced pluripotent stem cells (iPSCs), which are generated from the cells of an affected individual...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Reading

  • Baier, H., Klostermann, S., Trowe, T., Karlstrom, R. O., Nusslein-Volhard, C., & Bonhoeffer, F. (1996). Genetic dissection of the retinotectal projection. Development, 123, 415–425.

    PubMed  Google Scholar 

  • Baraban, S. C., Dinday, M. T., & Hortopan, G. A. (2013). Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nature Communications, 4, 2410.

    Article  Google Scholar 

  • Blaker-Lee, A., Gupta, S., McCammon, J. M., De Rienzo, G., & Sive, H. (2012). Zebrafish homologs of genes within 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes. Disease Models & Mechanisms, 5, 834–851.

    Article  Google Scholar 

  • De Rubeis, S., He, X., Goldberg, A. P., Poultney, C. S., Samocha, K., Cicek, A. E., Kou, Y., Liu, L., Fromer, M., Walker, S., et al. (2014). Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 515, 209–215.

    Article  Google Scholar 

  • Doyon, Y., McCammon, J. M., Miller, J. C., Faraji, F., Ngo, C., Katibah, G. E., Amora, R., Hocking, T. D., Zhang, L., Rebar, E. J., et al. (2008). Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnology, 26, 702–708.

    Article  Google Scholar 

  • Filosa, A., Barker, A. J., Dal Maschio, M., & Baier, H. (2016). Feeding state modulates behavioral choice and processing of Prey Stimuli in the Zebrafish Tectum. Neuron, 90, 596–608.

    Article  Google Scholar 

  • Golzio, C., Willer, J., Talkowski, M. E., Oh, E. C., Taniguchi, Y., Jacquemont, S., Reymond, A., Sun, M., Sawa, A., Gusella, J. F., et al. (2012). KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature, 485, 363–367.

    Article  Google Scholar 

  • Granato, M., & Nusslein-Volhard, C. (1996). Fishing for genes controlling development. Current Opinion in Genetics & Development, 6, 461–468.

    Article  Google Scholar 

  • Granato, M., van Eeden, F. J., Schach, U., Trowe, T., Brand, M., Furutani-Seiki, M., Haffter, P., Hammerschmidt, M., Heisenberg, C. P., Jiang, Y. J., et al. (1996). Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development, 123, 399–413.

    PubMed  Google Scholar 

  • Guo, S. (2009). Using zebrafish to assess the impact of drugs on neural development and function. Expert Opinion on Drug Discovery, 4, 715–726.

    Article  Google Scholar 

  • Hoffman, E. J., Turner, K. J., Fernandez, J. M., Cifuentes, D., Ghosh, M., Ijaz, S., Jain, R. A., Kubo, F., Bill, B. R., Baier, H., et al. (2016). Estrogens suppress a behavioral phenotype in Zebrafish mutants of the autism risk gene, CNTNAP2. Neuron, 89, 725–733.

    Article  Google Scholar 

  • Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., Tsai, S. Q., Sander, J. D., Peterson, R. T., Yeh, J. R., & Joung, J. K. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 31, 227–229.

    Article  Google Scholar 

  • Ijaz, S., & Hoffman, E. J. (2016). Zebrafish: A translational model system for studying neuropsychiatric disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 55, 746–748.

    Article  Google Scholar 

  • Iossifov, I., O'Roak, B. J., Sanders, S. J., Ronemus, M., Krumm, N., Levy, D., Stessman, H. A., Witherspoon, K. T., Vives, L., Patterson, K. E., et al. (2014). The contribution of de novo coding mutations to autism spectrum disorder. Nature, 515, 216–221.

    Article  Google Scholar 

  • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821.

    Article  Google Scholar 

  • Karlstrom, R. O., Trowe, T., Klostermann, S., Baier, H., Brand, M., Crawford, A. D., Grunewald, B., Haffter, P., Hoffmann, H., Meyer, S. U., et al. (1996). Zebrafish mutations affecting retinotectal axon pathfinding. Development, 123, 427–438.

    PubMed  Google Scholar 

  • Kok, F. O., Shin, M., Ni, C. W., Gupta, A., Grosse, A. S., van Impel, A., Kirchmaier, B. C., Peterson-Maduro, J., Kourkoulis, G., Male, I., et al. (2015). Reverse genetic screening reveals poor correlation between Morpholino-induced and mutant phenotypes in zebrafish. Developmental Cell, 32, 97–108.

    Article  Google Scholar 

  • Kokel, D., Bryan, J., Laggner, C., White, R., Cheung, C. Y., Mateus, R., Healey, D., Kim, S., Werdich, A. A., Haggarty, S. J., et al. (2010). Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nature Chemical Biology, 6, 231–237.

    Article  Google Scholar 

  • Kozol, R. A., Cukier, H. N., Zou, B., Mayo, V., De Rubeis, S., Cai, G., Griswold, A. J., Whitehead, P. L., Haines, J. L., Gilbert, J. R., et al. (2015). Two knockdown models of the autism genes SYNGAP1 and SHANK3 in zebrafish produce similar behavioral phenotypes associated with embryonic disruptions of brain morphogenesis. Human Molecular Genetics, 24, 4006–4023.

    Article  Google Scholar 

  • McCammon, J. M., & Sive, H. (2015). Challenges in understanding psychiatric disorders and developing therapeutics: A role for zebrafish. Disease Models & Mechanisms, 8, 647–656.

    Article  Google Scholar 

  • Meng, X., Noyes, M. B., Zhu, L. J., Lawson, N. D., & Wolfe, S. A. (2008). Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nature Biotechnology, 26, 695–701.

    Article  Google Scholar 

  • Moens, C. B., Donn, T. M., Wolf-Saxon, E. R., & Ma, T. P. (2008). Reverse genetics in zebrafish by TILLING. Briefings in Functional Genomics & Proteomics, 7, 454–459.

    Article  Google Scholar 

  • Muto, A., Ohkura, M., Abe, G., Nakai, J., & Kawakami, K. (2013). Real-time visualization of neuronal activity during perception. Current Biology: CB, 23, 307–311.

    Article  Google Scholar 

  • Portugues, R., Haesemeyer, M., Blum, M. L., & Engert, F. (2015). Whole-field visual motion drives swimming in larval zebrafish via a stochastic process. The Journal of Experimental Biology, 218, 1433–1443.

    Article  Google Scholar 

  • Rihel, J., Prober, D. A., Arvanites, A., Lam, K., Zimmerman, S., Jang, S., Haggarty, S. J., Kokel, D., Rubin, L. L., Peterson, R. T., et al. (2010). Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science, 327, 348–351.

    Article  Google Scholar 

  • Sanders, S. J., He, X., Willsey, A. J., Ercan-Sencicek, A. G., Samocha, K. E., Cicek, A. E., Murtha, M. T., Bal, V. H., Bishop, S. L., Dong, S., et al. (2015). Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron, 87, 1215–1233.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen J. Hoffman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this entry

Cite this entry

Sakai, C., Hoffman, E.J. (2016). Zebrafish Models. In: Volkmar, F. (eds) Encyclopedia of Autism Spectrum Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6435-8_102152-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6435-8_102152-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6435-8

  • Online ISBN: 978-1-4614-6435-8

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics