Skip to main content

Aggression

  • Living reference work entry
  • First Online:
Neuroscience in the 21st Century

Abstract

Aggression is a normal and necessary component of social behavior that evolved to promote the protection of self, resources, progeny, and territory. However, excessive aggressiveness and disruptive violent outbursts are common problematic symptoms of multiple psychiatric disorders and represent a significant global burden. Current therapeutic strategies are limited due to a lack of understanding about the neural and molecular mechanisms underlying the “vicious” shift of normal adaptive aggression into violence. However, increasingly sophisticated neuroimaging tools for measuring human brain structure and function, together with the rapidly emerging preclinical tools for detailed mapping, measuring, and manipulating neuronal activity in the animal brain, have provided significant understanding of the precise neural microcircuitry and its dynamic molecular functioning underlying aggressive behavior. The core neuronal aggression network includes discrete clusters of neurons in the medial nucleus of the amygdala, bed nucleus of the stria terminalis, ventrolateral part of the ventromedial hypothalamus, and ventral part of the ventromedial premammillary nucleus. This core aggression circuit drives the various motor and autonomic aspects of aggression via its prominent projection to the midbrain periaqueductal gray area that in turn orchestrate the brainstem/spinal cord structures involved in executing motor output. Cognitive “top-down” forebrain control of this aggression circuit is mainly mediated through hippocampus-lateral septal and (prefrontal) cortical input supported by ascending midbrain monoaminergic nuclei like the dorsal/medial raphe nucleus (serotonin) and ventral tegmental area (dopamine).

This central circuit is evolutionary well conserved in all vertebrate species. The same holds for serotonin, dopamine, vasopressin, oxytocin, and adrenal/gonadal steroids as the major neurochemical modulators of offensive aggression and its underlying neuronal network. Obviously, the current emerging circuit-level knowledge of the neuronal and molecular underpinnings of aggression in both its normal and excessive forms have great potential to guide the rational development of effective therapeutic interventions for pathological aggressive behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

5-HIAA:

5-hydoxyindoleacetic acid

5-HT:

Serotonin

5-HTT:

Serotonin transporter

AAS:

Anabolic androgen steroids

ACC:

Anterior cingulate cortex

AMYG:

Amygdala

Aob:

Accessory olfactory bulb

AVP:

Arginine vasopressin

AVPV:

Anteroventral periventricular nucleus

BNST:

Bed nucleus of the stria terminalis

CeA:

Central amygdala

Cp:

Caudate putamen

CSF:

Cerebrospinal fluid

DRN:

Dorsal raphé nucleus

ER:

Estrogen receptor

GABA:

Gamma amino butyric acid

Glu:

Glutamate

HIP:

Hippocampus

HYP:

Hypothalamus

LHB:

Lateral habenula

LS:

Lateral septum

MeA:

Medial amygdala

MPOA:

Medial preoptic nucleus

MRN:

Medial raphé nucleus

NAc:

Nucleus accumbens

NO:

Nitric oxide

Ob:

Olfactory bulb

OXT:

Oxytocin

PAG:

Periaqueductal gray

PET:

Positron emission topography

PFC:

Prefrontal cortex

Pit:

Pituitary

PMV:

Ventral premammillary nucleus

SBN:

Social behavioral network

SDMN:

Social decision-making network

SNR:

Substantia nigra

SPECT:

Single photon emission computer tomography

SPZ:

Subparaventricular zone

Thal:

Thalamus

Vp:

Ventral pallidum

VTA:

Ventral tegmental area

References

  • Anderson DJ (2012) Optogenetics, sex, and violence in the brain: implications for psychiatry. Biol Psychiatry 71:1081–1089

    Article  PubMed  Google Scholar 

  • Audero E, Mlinar B, Baccini G, Skachokova ZK, Corradetti R, Gross C (2013) Suppression of serotonin neuron firing increases aggression in mice. J Neurosci 33(20):8678–8688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayless DW, Yang T, Mason MM, Susanto AAT, Lobdell A, Shah NM (2019) Limbic Neurons Shape Sex Recognition and Social Behavior in Sexually Naive Males. Cell 176(5):1190–1205

    Google Scholar 

  • Barbosa DAN, de Oliveira-Souza R, Monte Santo F, de Oliveira Faria AC, Gorgulho AA, De Salles AAF (2017) The hypothalamus at the crossroads of psychopathology and neurosurgery Neurosurg Focus 43(3):E15

    Google Scholar 

  • Bejjani BP, Houeto JL, Hariz M, Yelnik J, Mesnage V, Bonnet AM, Pidoux B, Dormont D, Cornu P, Agid Y (2002) Aggressive behavior induced by intraoperative stimulation in the triangle of Sano. Neurology 59:1425–1427

    Google Scholar 

  • Biro L, Toth M, Sipos E, Bruzsik B, Tulogdi A, Bendahan S, Sandi C, Haller J (2017) Structural and functional alterations in the prefrontal cortex after post-weaning social isolation: relationship with species-typical and deviant aggression. Brain Struct Funct 222(4):1861–1875

    Article  PubMed  Google Scholar 

  • Biro L, Sipos E, Bruzsik B, Farkas I, Zelena D, Balazsfi D, Toth M, Haller J (2018) J Neurosci 38(17):4065–4075

    Google Scholar 

  • Blair RJR (2010) Neuroimaging of psychopathy and antisocial behavior: a targeted review. Curr. Psychiatry Rep 12:76–82

    Google Scholar 

  • Bohus B, de Wied D (1998) The vasopressin deficient Brattleboro rats: a natural knockout model used in the search for CNS effects of vasopressin. Prog Brain Res 119:555–573

    Article  CAS  PubMed  Google Scholar 

  • Brothers L (1990) The neural basis of primate social communication. Motiv Emot 14:81–91

    Google Scholar 

  • Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA (1993) Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262(5133):578–580

    Article  CAS  PubMed  Google Scholar 

  • Buckholtz JW, Meyer-Lindenberg A (2008) MAOA and the neurogenetic architecture of human aggression. Trends Neurosci. 31(3):120–9

    Google Scholar 

  • Buckholtz JW, Treadway MT, Cowan RL, Woodward ND, Benning SD, Li R, Ansari MS, Baldwin RM, Schwartzman AN, Shelby ES, Smith CE, Cole D, Kessler RM, Zald DH (2010) Mesolimbic dopamine reward system hypersensitivity in individuals with psychopathic traits. Nat Neurosci 13(4):419–21

    Google Scholar 

  • Calcagnoli F, de Boer SF, Althaus M, den Boer JA, Koolhaas JM (2013) Antiaggressive activity of central oxytocin in male rats. Psychopharmacology 229:639–651

    Article  CAS  PubMed  Google Scholar 

  • Calcagnoli F, Stubbendorff C, Meyer N, de Boer SF, Althaus M, Koolhaas JM (2015) Oxytocin microinjected into the central amygdaloid nuclei exerts anti-aggressive effects in male rats. Neuropharmacology 90:74–81

    Article  CAS  PubMed  Google Scholar 

  • Caramaschi D, de Boer SF, Vries HD, Koolhaas JM (2008) Development of violence in mice through repeated victory along with changes in prefrontal cortex neurochemistry. Behav Brain Res 189:263–272

    Google Scholar 

  • Chen P, Hong W (2018) Neural circuit mechanisms of social behavior. Neuron 98(1):16–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choy O, Raine A, Hamilton RH (2018) Stimulation of the prefrontal cortex reduces intentions tocommit aggression: a randomized, double-blind, placebo-controlled, stratified, parallel-group trial. J Neurosci 38(29):6505–6512

    Google Scholar 

  • Coppens CM, de Boer SF, Buwalda B, Koolhaas JM (2014) Aggression and aspects of impulsivity in wild-type rats. Aggress Behav 40(4):300–308

    Article  PubMed  Google Scholar 

  • Couppis MH, Kennedy CH (2008) The rewarding effect of aggression is reduced by nucleus accumbens dopamine receptor antagonism in mice. Psychopharmacology 197:449–456

    Article  CAS  PubMed  Google Scholar 

  • Davidson RJ, Putnam KM, Larson CL (2000) Dysfunction in the neural circuitry of emotion regulation – a possible prelude to violence. Science 289(5479):591–594

    Article  CAS  PubMed  Google Scholar 

  • de Almeida RM, Ferrari PF, Parmigiani S, Miczek KA (2005) Escalated aggressive behavior: dopamine, serotonin and GABA. Eur J Pharmacol 526(1–3):51–64

    Article  PubMed  Google Scholar 

  • De Boer SF, Koolhaas JM (2005) 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol 526(1–3):125–139

    Article  PubMed  Google Scholar 

  • De Boer SF, Newman-Tancredi A (2016) Anti-aggressive effects of the selective high-efficacy ‘biased’ 5-HT1A receptor agonists F15599 and F13714 in male WTG rats. Psychopharmacology 233(6):937–947

    Article  PubMed  Google Scholar 

  • De Boer SF, Caramaschi D, Natarajan D, Koolhaas JM (2009) The vicious cycle towards violence: focus on the negative feedback mechanisms of brain serotonin neurotransmission. Front Behav Neurosci 3:52

    PubMed  PubMed Central  Google Scholar 

  • De Boer SF, Olivier B, Veening J, Koolhaas JM (2015) The neurobiology of aggression: revealing a modular view. Physiol Behav 146:111–127

    Article  PubMed  Google Scholar 

  • De Boer SF, Buwalda B, Koolhaas JM (2017) Untangling the neurobiology of coping styles in rodents: towards neural mechanisms underlying individual differences in disease susceptibility. Neurosci Biobehav Rev 74:401–422

    Article  PubMed  Google Scholar 

  • Deisseroth K (2014) Circuit dynamics of adaptive and maladaptive behavior. Nature 505(7483):309–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duke AA, Bègue L, Bell R, Eisenlohr-Moul T (2013) Revisiting the serotonin-aggression relation in humans: a meta-analysis. Psychol Bull 139(5):1148–72

    Google Scholar 

  • Dunbar RIM (2009) The social brain hypothesis and its implications for social evolution. Ann Hum Biol 36:562–572

    Article  CAS  PubMed  Google Scholar 

  • Elbert T, Schauer M, Moran JK (2018) Two pedals drive the bi-cycle of violence: reactive and appetitive aggression. Curr Opin Psychol 19:135–138

    Article  PubMed  Google Scholar 

  • Falkner AL, Dollar P, Perona P, Anderson DJ, Lin D (2014) Decoding ventromedial hypothalamic neural activity during male mouse aggression. J Neurosci 34(17):5971–842016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falkner AL, Grosenick L, Davidson TJ, Deisseroth K, Lin D (2016) Hypothalamic control of male aggression-seeking behavior. Nat Neurosci 19(4):596–604

    Google Scholar 

  • Ferrari PF, van Erp AMM, Tornatzky W, Miczek KA (2003) Accumbal dopamine and serotonin in anticipation of the next aggressive episode in rats. Eur J Neurosci 17:371–378

    Google Scholar 

  • Ferris CF, Stolberg T, Kulkarni P, Murugavel M, Blanchard R, Blanchard DC, Febo M, Brevard M, Simon NG (2008) Imaging the neural circuitry and chemical control of aggressive motivation. BMC Neurosci 9:111

    Article  PubMed  PubMed Central  Google Scholar 

  • Flanigan M, Aleyasin H, Takahashi A, Golden SA, Russo SJ (2017) An emerging role for the lateral Habenula in aggressive behavior. Pharmacol Biochem Behav 162:79–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franzini A, Messina G, Cordella R, Marras C, Broggi G (2010) Deep brain stimulation of the posteromedial hypothalamus: indications, long-term results, and neurophysiological considerations. Neurosurgical Focus 29: E13

    Google Scholar 

  • Freudenberg F, Gutierrez HG, Post AM, Reif A, Norton WHJ (2015) Aggression in non-human vertebrates: genetic mechanisms and molecular pathways. Am J Med Genet Part B 9999:1–38

    Google Scholar 

  • Geniole SN, Bird BM, McVittie JS, Purcell RB, Archer J, Carré JM (2020) Is testosterone linked to human aggression? A meta-analytic examination of the relationship between baseline, dynamic, and manipulated testosterone on human aggression. Horm Behav 123:104644

    Article  CAS  PubMed  Google Scholar 

  • Gesquiere LR, Learn NH, Simao MC, Onyango PO, Alberts SC, Altmann J (2011) Life at the top: rank and stress in wild male baboons. Science 333(6040):357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golden SA, Aleyasin H, Heins R, Flanigan M, Heshmati M, Takahashi A, Russo SJ, Shaham Y (2017a) Persistent conditioned place preference to aggression experience in adult male sexually-experienced CD-1 mice. Genes Brain Behav 16(1):44–55

    Article  CAS  PubMed  Google Scholar 

  • Golden SA, Heins C, Venniro M, Caprioli D, Zhang M, Epstein DH, Shaham Y (2017b) Compulsive addiction-like aggressive behavior in mice. Biol Psychiatry 82(4):239–248

    Article  PubMed  PubMed Central  Google Scholar 

  • Golden SA, Jin M, Shaham Y (2019) Animal models of (or for) aggression reward, addiction, and relapse: behavior and circuits. J Neurosci 39(21):3996–4008

    Article  PubMed  PubMed Central  Google Scholar 

  • Gómez JM, Verdú M, González-Megías A, Méndez M (2016) The phylogenetic roots of human lethal violence. Nature 538(7624):233–237

    Article  PubMed  Google Scholar 

  • Goodson JL (2005) The vertebrate social behavior network: evolutionary themes and variations. Horm Behav 48:11–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Gouveia FV, Hamani C, Fonoff ET, Brentani H, Alho EJL, de Morais RMCB, de Souza AL, Rigonatti SP, Martinez RCR (2019) Amygdala and Hypothalamus: Historical Overview with focus on aggression. Neurosurgery 85(1):11–30

    Google Scholar 

  • Haller J, Kruk MR (2006) Normal and abnormal aggression: human disorders and novel laboratory models. Neurosci Biobehav Rev 30:292–303

    Article  PubMed  Google Scholar 

  • Haller J, Tóth M, Halasz J, De Boer SF (2006) Patterns of violent aggression-induced brain c-fos expression in male mice selected for aggressiveness. Physiol Behav 88(1–2):173–182

    Article  CAS  PubMed  Google Scholar 

  • Han W, Tellez LA, Rangel MJ Jr, Motta SC, Zhang X, Perez IO, Canteras NS, Shammah-Lagnado SJ, van den Pol AN, de Araujo IE (2017) Integrated Control of Predatory Hunting by the Central Nucleus of the Amygdala. Cell 168(1–2):311–324

    Google Scholar 

  • Hashikawa K, Hashikawa Y, Tremblay R, Zhang J, Feng JE, Sabol A, Piper WT, Lee H, Rudy B, Lin D (2017) Esr1+ cells in the ventromedial hypothalamus control female aggression. Nat Neurosci 20(11):1580–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashikawa K, Hashikawa Y, Lischinsky J, Lin D (2018) The neural mechanisms of sexually dimorphic aggressive behaviors. Trends Genet 34(10):755–776

    Article  CAS  PubMed  Google Scholar 

  • Heinrichs M, von Dawans B, Domes G (2009) Oxytocin, vasopressin, and human social behavior. Front Neuroendocrinol 30(4):548–557

    Article  CAS  PubMed  Google Scholar 

  • Homberg JR, Pattij T, Janssen MC, Ronken E, De Boer SF, Schoffelmeer AN, Cuppen E (2007) Serotonin transporter deficiency in rats improves inhibitory control but not behavioural flexibility. Eur J Neurosci 26(7):2066–2073

    Article  PubMed  Google Scholar 

  • Hong W, Kim DW, Anderson DJ (2014) Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. Cell 158:1348–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koolhaas JM, de Boer SF, Buwalda B, van Reenen K (2007) Individual variation in coping with stress: a multidimensional approach of ultimate and proximate mechanisms. Brain Behav Evol 70:218–226

    Article  PubMed  Google Scholar 

  • Koolhaas JM, de Boer SF, Buwalda B (2010) Neuroendocrinology of coping styles: towards understanding the biology of individual variation. Frontiers in Neuroendocrinology 31(3):307–321

    Google Scholar 

  • Kruk M (2014) Hypothalamic attack: a wonderful artifact or a useful perspective on escalation and pathology of aggression? A viewpoint. Curr Topics Behav Neurosci 17:313

    Google Scholar 

  • Lammel S, Lim BK, Ran C, Huang KW, Betley MJ, Tye KM, Deisseroth K, Malenka RC (2012) Input-specific control of reward and aversion in the ventral tegmental area. Nature 491(7423):212–7

    Google Scholar 

  • Lee HJ, Macbeth AH, Pagani JH, Young WS (2009) Oxytocin: the great facilitator of life. Prog Neurobiol 88:127–151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leroy F, Park J, Asok A, Brann DH, Meira T, Boyle LM, Buss EW, Kandel ER, Siegelbaum SA (2018) A circuit from hippocampal CA2 to lateral septum disinhibits social aggression. Nature 564(7735):213–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, Anderson DJ (2011) Functional identification of an aggression locus in the mouse hypothalamus. Nature 470:221–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo L, Yao S, Kim DW, Cetin A, Harris J, Zeng H, Anderson DJ, Weissbourd B (2019) Connectional architecture of a mouse hypothalamic circuit node controlling social behavior. Proc Natl Acad Sci U S A 116(15):7503–7512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lonstein JS, Simmons DA, Stern JM (1998) Site and behavioral specificity of periaqueductal gray lesions on postpartum sexual, maternal, and aggressive behaviors in rats. Behav Neurosci 112(6):1502–1518

    Article  CAS  PubMed  Google Scholar 

  • Luiten PG, Koolhaas JM, de Boer S, Koopmans SJ (1985) The cortico-medial amygdala in the central nervous system organization of agonistic behavior. Brain Res 332(2):283–297

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA, de Almeida RM, Kravitz EA, Rissman EF, de Boer SF, Raine A (2007) Neurobiology of escalated aggression and violence. J Neurosci 27(44):11803–11806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miczek KA, de Boer SF, Haller J (2013) Excessive aggression as model of violence: a critical evaluation of current preclinical methods. Psychopharmacology 226:445–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miczek KA, DeBold JF, Hwa LS, Newman EL, de Almeida RM (2015) Alcohol and violence: neuropeptidergic modulation of monoamine systems. Ann N Y Acad Sci

    Google Scholar 

  • Newman SW (1999) The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Ann N Y Acad Sci 877:242–257

    Article  CAS  PubMed  Google Scholar 

  • Niederkofler V, Asher TE, Okaty BW, Rood BD, Narayan A, Hwa LS, Beck SG, Miczek KA, Dymecki SM (2016) Functional Interplay between Dopaminergic and Serotonergic Neuronal Systems during Development and Adulthood Cell Rep 17(8):1934–1949

    Google Scholar 

  • O’Connell LA, Hofmann HA (2012) Evolution of a vertebrate social decision-making network. Science 336(6085):1154–1157

    Article  PubMed  Google Scholar 

  • Ogawa S, Lubahn DB, Korach KS, Pfaff DW (1997) Behavioral effects of estrogen receptor gene disruption in male mice. Proc Natl Acad Sci U S A 94(4):1476–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padilla SL, Qiu J, Soden ME, Sanz E, Nestor CC, Barker FD, Quintana A, Zweifel LS, Rønnekleiv OK, Kelly MJ, Palmiter RD (2016) Agouti-related peptide neural circuits mediate adaptive behaviors in the starved state. Nat Neurosci 19(5):734–741

    Google Scholar 

  • Rogan SC and Roth BL (2011) Remote control of neuronal signaling. Pharmacol Rev 63:291–315

    Google Scholar 

  • Sano K, Tsuda MC, Musatov S, Sakamoto T, Ogawa S (2013) Differential effects of site-specific knockdown of estrogen receptor alpha in the medial amygdala, medial pre-optic area, and ventromedial nucleus of the hypothalamus on sexual and aggressive behavior of male mice. Eur J Neurosci 37:1308–1319

    Article  PubMed  Google Scholar 

  • Santa Cruz MR, Hidalgo PC, Lee MS, Thomas CW, Holroyd S (2017) Buspirone for the treatment of dementia with behavioral disturbance. Int Psychogeriatr 29(5):859–862

    Article  PubMed  Google Scholar 

  • Schuurman T (1980) Hormonal correlates of agonistic behavior in adult male rats. Prog Brain Res 53:415–420

    Article  CAS  PubMed  Google Scholar 

  • Stagkourakis S, Spigolon G, Williams P, Protzmann J, Fisone G, Broberger C (2018) A neural network for intermale aggression to establish social hierarchy. Nat Neurosci 21(6):834–842

    Google Scholar 

  • Takahashi A, Miczek KA (2014) Neurogenetics of aggressive behavior: studies in rodents. Curr Top Behav Neurosci 17:3–44

    Google Scholar 

  • Takahashi A, Flanigan ME, McEwen BS, Russo SJ (2018) Aggression, social stress, and the immune system in humans and animal models front. Behav Neurosci 2212:56

    Article  Google Scholar 

  • Tinbergen N (1951) The study of instinct. Clarendon/Oxford University press

    Google Scholar 

  • Unger EK, Burke KJ Jr, Yang CF, Bender KJ, Fuller PM, Shah NM (2015) Medial amygdalar aromatase neurons regulate aggression in both sexes. Cell Rep 10(4):453–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Vegt BJ, Lieuwes N, Cremers TI, de Boer SF, Koolhaas JM (2003) Cerebrospinal fluid monoamine and metabolite concentrations and aggression in rats. Horm Behav 44(3):199–208

    Article  PubMed  Google Scholar 

  • Van Erp AM, Miczek KA (2000) Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats. J Neurosci 20(24):9320–9325

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Heukelum S, Drost L, Mogavero F, Jager A, Havenith MN, Glennon JC (2019) Aggression in BALB/cJ mice is differentially predicted by the volumes of anterior and midcingulate cortex. Brain Struct Funct 224(3):1009–1019

    Article  PubMed  Google Scholar 

  • Veening JG, Coolen LM, de Jong TR, Joosten HW, de Boer SF, Koolhaas JM et al (2005) Do similar neural systems subserve aggressive and sexual behaviour in male rats? Insights from c-Fos and pharmacological studies. Eur J Pharmacol 526(1–3):226–239

    Article  CAS  PubMed  Google Scholar 

  • Wong LC, Wang L, D’Amour JA, Yumita T, Chen G, Yamaguchi T, Chang BC, Bernstein H, You X, Feng JE, Froemke RC, Lin D (2016) Effective modulation of male aggression through lateral septum to medial hypothalamus projection. Curr Biol 26(5):593–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T, Wei D, Song SC, Lim B, Tritsch NX, Lin D (2020) Posterior amygdala regulates sexual and aggressive behaviors in male mice. Nat Neurosci 23(9):1111–1124

    Google Scholar 

  • Yang Y, Raine A (2009) Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: a meta-analysis. Psychiatry Res 174(2):81–88

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Q, Teixeira CM, Mahadevia D, Huang Y, Balsam D, Mann JJ, Gingrich JA, Ansorge MS (2014) Optogenetic stimulation of DAergic VTA neurons increases aggression. Mol Psychiatry 19(6):688–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zha X, Wang L, Jiao ZL, Yang RR, Xu C, Xu XH (2020) VMHvl-Projecting Vglut1+ Neurons in the Posterior Amygdala Gate Territorial Aggression. Cell Rep 31(3):107517

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sietse F. de Boer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

de Boer, S.F., Koolhaas, J. (2021). Aggression. In: Pfaff, D.W., Volkow, N.D., Rubenstein, J. (eds) Neuroscience in the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6434-1_74-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6434-1_74-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6434-1

  • Online ISBN: 978-1-4614-6434-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics