Skip to main content

Axonal Guidance: Making Connections

  • Living reference work entry
  • First Online:
Neuroscience in the 21st Century
  • 374 Accesses

Abstract

The vertebrate brain contains millions of neuronal and glial cells arranged in a highly organized manner forming functional neural circuits. To form these circuits during brain development, neurons extend an axon from the cell body to make connections with neurons in target brain areas, which can be a considerable distance away from the neuronal cell body. To ensure that axons accurately elongate toward the correct target field over such a distance, specific guidance cues are used to navigate the axons through their environment in a reproducible pattern of growth. These cues involve guidance molecules that can elicit attractive or repellent guidance on the extending axon and can act over long distances by secretion into extracellular space or over short distances through direct cell contact. In response to the guidance cues, the distal tip of the axon, known as the growth cone, undergoes dynamic structural changes to ensure that it is continually growing in the correct direction. In this chapter, we will discuss the range of highly conserved mechanisms and molecules involved in axon guidance, the biological changes that occur in axons during guidance, and the major assays used to measure the guidance of neuronal axons in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bak M, Fraser SE (2003) Axon fasciculation and differences in midline kinetics between pioneer and follower axons within commissural fascicles. Development 130(20):4999–5008

    Article  CAS  PubMed  Google Scholar 

  • Bate CM (1976) Pioneer neurones in an insect embryo. Nature 260(5546):54–56

    Article  CAS  PubMed  Google Scholar 

  • Benadiba C, Magnani D, Niquille M, Morlé L, Valloton D, Nawabi H, Ait-Lounis A, Otsmane B et al (2012) The ciliogenic transcription factor RFX3 regulates early midline distribution of guidepost neurons required for corpus callosum development. PLoS Genet 8(3), e1002606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bornemann DJ, Duncan JE, Staatz W, Selleck S, Warrior R (2004) Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways. Development 131(9):1927–1938

    Article  CAS  PubMed  Google Scholar 

  • Brose K, Tessier-Lavigne M (2000) Slit proteins: key regulators of axon guidance, axonal branching, and cell migration. Curr Opin Neurobiol 10(1):95–102

    Article  CAS  PubMed  Google Scholar 

  • Cohen S, Levi-Montalcini R, Hamburger V (1954) A nerve growth-stimulating factor isolated from sarcomas 37 and 180. Proc Natl Acad Sci U S A 40(10):1014–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conway CD, Howe KM, Nettleton NK, Price DJ, Mason JO, Pratt T (2011) Heparan sulfate sugar modifications mediate the functions of Slits and other factors needed for mouse forebrain commissure development. J Neurosci 31(6):1955–1970

    Article  CAS  PubMed  Google Scholar 

  • Cowan CA, Henkemeyer M (2002) Ephrins in reverse, park and drive. Trends Cell Biol 12(7):339–346

    Article  CAS  PubMed  Google Scholar 

  • Dupin I, Dahan M, Studer V (2013) Investigating axonal guidance with microdevice-based approaches. J Neurosci 33(45):17647–17655

    Article  CAS  PubMed  Google Scholar 

  • Fabre PJ, Shimogori T, Charron F (2010) Segregation of ipsilateral retinal ganglion cell axons at the optic chiasm requires the Shh receptor Boc. J Neurosci 30(1):266–275

    Article  CAS  PubMed  Google Scholar 

  • Forbes EM, Thompson AW, Yuan J, Goodhill GJ (2012) Calcium and cAMP levels interact to determine attraction versus repulsion in axon guidance. Neuron 74(3):490–503

    Article  CAS  PubMed  Google Scholar 

  • Fothergill T, Donahoo A-LS, Douglass A, Zalucki O, Yuan J, Shu T, Goodhill GJ, Richards LJ (2014) Netrin-DCC signaling regulates corpus callosum formation through attraction of pioneering axons and by modulating Slit2-mediated repulsion. Cereb Cortex 24(5):1138–1151

    Article  PubMed  Google Scholar 

  • Garel S, López-Bendito G (2014) Inputs from the thalamocortical system on axon pathfinding mechanisms. Curr Opin Neurobiol 27:143–150

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Shatz CJ (1993) A role for subplate neurons in the patterning of connections from thalamus to neocortex. Development 117(3):1031–1047

    CAS  PubMed  Google Scholar 

  • Guirland C, Suzuki S, Kojima M, Lu B, Zheng JQ (2004) Lipid rafts mediate chemotropic guidance of nerve growth cones. Neuron 42(1):51–62

    Article  CAS  PubMed  Google Scholar 

  • Gundersen RW, Barrett JN (1979) Neuronal chemotaxis: chick dorsal-root axons turn toward high concentrations of nerve growth factor. Science 206(4422):1079–1080

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Yoshida T, Sakimura K, Mishina M, Watanabe M, Kano M (2009) Influence of parallel fiber–Purkinje cell synapse formation on postnatal development of climbing fiber–Purkinje cell synapses in the cerebellum. Neuroscience 162(3):601–611

    Article  CAS  PubMed  Google Scholar 

  • Jaworski A, Tom I, Tong RK, Gildea HK, Koch AW, Gonzalez LC, Tessier-Lavigne M (2015) Operational redundancy in axon guidance through the multifunctional receptor Robo3 and its ligand NELL2. Science 350(6263):957–961

    Article  Google Scholar 

  • Jongbloets BC, Pasterkamp RJ (2014) Semaphorin signalling during development. Development 141(17):3292–3297

    Article  CAS  PubMed  Google Scholar 

  • Kamiguchi H (2007) The role of cell adhesion molecules in axon growth and guidance. In: Bagnard D (ed) Axon growth and guidance. Landes Bioscience and Springer Science+Business Media, New York

    Google Scholar 

  • Keino-Masu K, Masu M, Hinck L, Leonardo ED, Chan SS, Culotti JG, Tessier-Lavigne M (1996) Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell 87(2):175–185

    Article  CAS  PubMed  Google Scholar 

  • Koester SE, O'Leary DDM (1993) Axons of early generated neurons in cingulate cortex pioneer the corpus callosum. J Neurosci 14(11):6608–6620

    Google Scholar 

  • Lee J-S, von der Hardt S, Rusch MA, Stringer SE, Stickney HL, Talbot WS, Geisler R, Nüsslein-Volhard C et al (2004) Axon sorting in the optic tract requires HSPG synthesis by ext2 (dackel) and extl3 (boxer). Neuron 44(6):947–960

    Article  CAS  PubMed  Google Scholar 

  • Lent R, Uziel D, Baudrimont M, Fallet CR (2005) Cellular and molecular tunnels surrounding the forebrain commissures of human fetuses. J Comp Neurol 483(4):375–382

    Article  PubMed  Google Scholar 

  • Lim JWC, Donahoo ALS, Bunt J, Edwards TJ, Fenlon LR, Liu Y, Zhou J, Moldrich RX et al (2015) EMX1 regulates NRP1-mediated wiring of the mouse anterior cingulate cortex. Development 142(21):3746–3757

    Article  PubMed  Google Scholar 

  • Lumsden AGS, Davies AM (1983) Earliest sensory nerve fibres are guided to peripheral targets by attractants other than nerve growth factor. Nature 306(5945):786–788

    Article  CAS  PubMed  Google Scholar 

  • Magnani D, Hasenpusch-Theil K, Benadiba C, Yu T, Basson MA, Price DJ, Lebrand C, Theil T (2014) Gli3 controls corpus callosum formation by positioning midline guideposts during telencephalic patterning. Cereb Cortex 24(1):186–198

    Article  PubMed  PubMed Central  Google Scholar 

  • Mann F, Chauvet S, Rougon G (2007) Semaphorins in development and adult brain: implication for neurological diseases. Prog Neurobiol 82(2):57–79

    Article  CAS  PubMed  Google Scholar 

  • Minocha S, Valloton D, Ypsilanti AR, Fiumelli H, Allen EA, Yanagawa Y, Marín O, Chédotal A et al (2015) Nkx2.1-derived astrocytes and neurons togetherwith Slit2 are indispensable for anterior commissure formation. Nat Commun 6(6887):1–15

    Google Scholar 

  • Moore SW, Tessier-Lavigne M, Kennedy TE (2007) Netrins and their receptors. In: Bagnard D (ed) Axon growth and guidance. Landes Bioscience and Springer, New York

    Google Scholar 

  • Nawabi H, Briançon-Marjollet A, Clark C, Sanyas I, Takamatsu H, Okuno T, Kumanogoh A, Bozon M et al (2010) A midline switch of receptor processing regulates commissural axon guidance in vertebrates. Genes Dev 24(4):396–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niquille M, Garel S, Mann F, Hornung J-P, Otsmane B, Chevalley S, Parras C, Guillemot F et al (2009) Transient neuronal populations are required to guide callosal axons: a role for Semaphorin 3C. PLoS Biol 7(10), e1000230

    Article  PubMed  PubMed Central  Google Scholar 

  • Onishi K, Hollis E, Zou Y (2014) Axon guidance and injury – lessons from Wnts and Wnt signaling. Curr Opin Neurobiol 27:232–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petros TJ, Rebsam A, Mason CA (2008) Retinal axon growth at the optic chiasm: to cross or not to cross. Annu Rev Neurosci 31(1):295–315

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffenberger C, Cutforth T, Woods G, Yamada J, Rentería RC, Copenhagen DR, Flanagan JG, Feldheim DA (2005) Ephrin-As and neural activity are required for eye-specific patterning during retinogeniculate mapping. Nat Neurosci 8(8):1022–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Philipsborn AC, Lang S, Loeschinger J, Bernard A, David C, Lehnert D, Bonhoeffer F, Bastmeyer M (2006) Growth cone navigation in substrate-bound ephrin gradients. Development 133(13):2487–2495

    Article  Google Scholar 

  • Piper M, Anderson R, Dwivedy A, Weinl C, van Horck F, Leung KM, Cogill E, Holt C (2006) Signaling mechanisms underlying Slit2-induced collapse of Xenopus retinal growth cones. Neuron 49(2):215–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajasekharan S, Kennedy TE (2009) The netrin protein family. Genome Biol 10(9):239

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosoff WJ, Urbach JS, Esrick MA, McAllister RG, Richards LJ, Goodhill GJ (2004) A new chemotaxis assay shows the extreme sensitivity of axons to molecular gradients. Nat Neurosci 7(6):678–682

    Article  CAS  PubMed  Google Scholar 

  • Schmitt AM, Shi J, Wolf AM, Lu C-C, King LA, Zou Y (2006) Wnt-Ryk signalling mediates medial-lateral retinotectal topographic mapping. Nature 439(7072):31–37

    CAS  PubMed  Google Scholar 

  • Shekarabi M, Kennedy TE (2002) The Netrin-1 receptor DCC promotes filopodia formation and cell spreading by activating Cdc42 and Rac1. Mol Cell Neurosci 19(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Sperry RW (1963) Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc Natl Acad Sci U S A 50(4):703–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Squarzoni P, Thion MS, Garel S (2015) Neuronal and microglial regulators of cortical wiring: usual and novel guideposts. Front Neurosci 9(248):1–16

    Google Scholar 

  • Stoeckli ET, Sonderegger P, Pollerberg GE, Landmesser LT (1997) Interference with Axonin-1 and NrCAM interactions unmasks a floor-plate activity inhibitory for commissural axons. Neuron 18(2):209–221

    Article  CAS  PubMed  Google Scholar 

  • Suárez R, Globius I, Richards LJ (2014) Evolution and development of interhemispheric connections in the vertebrate forebrain. Front Hum Neurosci 8(497):1–14

    Google Scholar 

  • Tamariz E, Varela-Echavarría A (2015) The discovery of the growth cone and its influence on the study of axon guidance. Frontier Neuroanat 9(51):1–9

    Google Scholar 

  • Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274(5290):1123–1133

    Article  CAS  PubMed  Google Scholar 

  • Walter J, Kern-Veits B, Huf J, Stolze B, Bonhoeffer F (1987) Recognition of position-specific properties of tectal cell membranes by retinal axons in vitro. Development 101(4):685–696

    CAS  PubMed  Google Scholar 

  • Yam PT, Charron F (2013) Signaling mechanisms of non-conventional axon guidance cues: the Shh, BMP and Wnt morphogens. Curr Opin Neurobiol 23(6):965–973

    Article  CAS  PubMed  Google Scholar 

  • Yamashita T, Tucker KL, Barde Y-A (1999) Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron 24:585–593

    Article  CAS  PubMed  Google Scholar 

  • Ypsilanti AR, Zagar Y, Chedotal A (2010) Moving away from the midline: new developments for Slit and Robo. Development 137(12):1939–1952

    Article  CAS  PubMed  Google Scholar 

  • Zelina P, Blockus H, Zagar Y, Péres A, Friocourt F, Wu Z, Rama N, Fouquet C et al (2014) Signaling switch of the axon guidance receptor Robo3 during vertebrate evolution. Neuron 84(6):1258–1272

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda J. Richards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Kozulin, P., Richards, L.J. (2016). Axonal Guidance: Making Connections. In: Pfaff, D., Volkow, N. (eds) Neuroscience in the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6434-1_131-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6434-1_131-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6434-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics