Skip to main content

3rd-Generation Biofuels: Bacteria and Algae as Sustainable Producers and Converters

Abstract

Biofuels have been commercialized, predominantly bioethanol, biodiesel, and biogas. Mostly, they are based on edible feedstock such as corn, maize, or soybean (so-called 1st-generation (1G) biofuels). The arising competition over arable land with food crops has caused significant debate, as well as the net contribution to climate change mitigation, where it was found that sometimes 1G biofuels perform even worse than petroleum-based fuels, due to land use change, fertilizer usage, and process yields, for instance. Biofuel research has hence targeted lignocellulosic feedstock, which exists in abundance. Due to the stability of these biopolymers, cost-effective 2G biofuels are now only at the verge of commercialization. Processes to break up the biomass into fuels are thermochemical and biochemical, using enzymes. 3G biofuels have been envisioned, where microorganisms are deployed. For instance, since algae can form up to 200 times more biomass per area than terrestrial biomass, they hold great promise for future biofuel production on marginal land or in the ocean. In this chapter, 2G and particularly 3G biofuel concepts, where bacteria and algae are used to obtain biofuels, are discussed. Standard industrial processes, like ethanol fermentation through microorganisms for regular 1G biofuels, are not covered here. Alternative biofuels from bacteria and algae, such as biomethanol or biohydrogen, are also addressed.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    A taxonomic rank below kingdom and above class in biology.

References

  • (2007) Price volatility in food and agricultural markets: policy responses. FAO, IFAD, IMF,OECD, UNCTAD, WFP, the World Bank, the WTO, IFPRI and the UN HLTF, Rome, Italy. http://www.oecd.org/tad/agricultural-trade/48152638.pdf

  • (2008) BioMCN produces biomethanol from by-product glycerol. Focus Catal 2008(12):3. doi:10.1016/S1351-4180(08)70549-X

    Google Scholar 

  • Aatola H, Larmi M, Sarjovaara T, Mikkonen S (2008) Hydrotreated vegetable oil (HVO) as a renewable diesel fuel: trade-off between NOx, particulate emission, and fuel consumption of a heavy duty engine, SAE paper 2008-01-2500. http://www.biofuelstp.eu/downloads/SAE_Study_Hydrotreated_Vegetable_Oil_HVO_as_a_Renewable_Diesel_Fuel.pdf

  • Adnan NAA, Suhaimi SN, Abd-Aziz S, Hassan MA, Phang L-Y (2014) Optimization of bioethanol production from glycerol by Escherichia coli SS1. Renew Energy 66:625–633

    Article  Google Scholar 

  • Akhtar MK, Dandapani H, Thiel K, Jones PR (2015) Microbial production of 1-octanol: a naturally excreted biofuel with diesel-like properties. Metab Eng Commun 2:1–5

    Article  Google Scholar 

  • Alternative Jet Fuel (2015) http://www.euglena.jp/en/solution/energy.html

  • Anne S, Ieva R, Martina O, Punjanit L Biofuels vital graphics - powering green economy. http://www.grida.no/publications/vg/biofuels/. Accessed 4 May 2015

  • Apel WA, Walton MR, Dugan PR (1994) An evaluation of autotrophic microbes for the removal of carbon dioxide from combustion gas streams. Fuel Process Technol 40(2–3):139–149

    Article  Google Scholar 

  • Arasto A, Onarheim K, Tsupari E, Kärki J (2014) Bio-CCS: feasibility comparison of large scale carbon-negative solutions. Energy Procedia 63:6756–6769

    Article  Google Scholar 

  • Arifin Y, Tanudjaja E, Dimyati A, Pinontoan R (2014) A second generation biofuel from cellulosic agricultural by-product fermentation using clostridium species for electricity generation. Energy Procedia 47:310–315

    Article  Google Scholar 

  • Bajpai P (2013) Advances in bioethanol. Springer. ISBN-13 978-8132215837

    Google Scholar 

  • Biofuels and biodiversity, CBD technical series no. 65. http://www.cbd.int/doc/publications/cbd-ts-65-en.pdf. Accessed 4 May 2015

  • Biofuels production via HTU and via pyrolysis, report 2GAVE-05.07. http://english.rvo.nl/sites/default/files/2013/11/Report%20Biofuels%20production%20via%20HTU%20and%20pyrolysis%202GAVE-05-07.pdf

  • Brandt AR, Dale M (2011) A general mathematical framework for calculating systems-scale efficiency of energy extraction and conversion: energy return on investment (EROI) and other energy return ratios. Energies 4:1211–1245. doi:10.3390/en4081211

    Article  Google Scholar 

  • Choi YJ, Park JH, Kim TY, Lee SY (2012) Metabolic engineering of Escherichia coli for the production of 1-propanol. Metab Eng 14(5):477–486

    Article  Google Scholar 

  • Cremonez PA, Feroldi M, de Araújo AV, Negreiros Borges M, Weiser Meier T, Feiden A, Gustavo Teleken J (2015) Biofuels in Brazilian aviation: current scenario and prospects. Renew Sustain Energy Rev 43:1063–1072

    Article  Google Scholar 

  • Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:389–395. www.atmos-chem-phys.net/8/389/2008/

  • Cuellar-Bermudez SP, Garcia-Perez JS, Rittmann BE, Parra-Saldivar R (2015) Photosynthetic bioenergy utilizing CO2: an approach on flue gases utilization for third generation biofuels. J Clean Prod 98:53–65

    Google Scholar 

  • Daniel F, Rajita M, Joanne M, Ron P, Joyce Y, US department of energy, national algal biofuels technology roadmap. http://www1.eere.energy.gov/bioenergy/pdfs/algal_biofuels_roadmap.pdf. Accessed 4 May 2015

  • Day JG, Thomas NJ, Achilles-Day UEM, Leakey RJG (2012) Early detection of protozoan grazers in algal biofuel culture. Bioresour Technol 114:715–719

    Article  Google Scholar 

  • Demirbas A (2010) Biodiesel: a realistic fuel alternative for diesel engines. Springer. ISBN-13 978-1849966962

    Google Scholar 

  • Demirbas A (2011) Biohydrogen: green energy and technology. Springer. ISBN 978-1447122869

    Google Scholar 

  • Deng Y, Fong SS (2011) Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol. Metab Eng 13(5):570–577

    Article  Google Scholar 

  • Deublein D, Steinhauser A (2010) Biogas from waste and renewable resources: an introduction, 2nd edn. Wiley-VCH, Weinheim. ISBN 978-3527327980

    Book  Google Scholar 

  • Divya D, Gopinath LR, Merlin Christy P (2015) A review on current aspects and diverse prospects for enhancing biogas production in sustainable means. Renew Sustain Energy Rev 42:690–699

    Article  Google Scholar 

  • Elshahed MS (2010) Microbiological aspects of biofuel production: current status and future directions. J Adv Res 1(2):103–111

    Article  Google Scholar 

  • EPA (2015) What is sustainability? http://www.epa.gov/sustainability/basicinfo.htm. Accessed 4 May 2015

  • Eric DL Biofuel production technologies: status, prospects and implications for trade and development. http://unctad.org/en/docs/ditcted200710_en.pdf. Accessed 4 May 2015

  • European Union (2009) Directive 2009/28/EC of the European Parliament and of the Council on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off J Eur Union L 140:16–47. http://www.ecolex.org/ecolex/ledge/view/RecordDetails;jsessionid=81486EE7CA5E560409D392398C9539A0?id=LEX-FAOC088009&index=documents

  • Fang Z (2013) Pretreatment techniques for biofuels and biorefineries. Springer, Berlin. ISBN 978-3642327346

    Book  Google Scholar 

  • Faraco V (2013) Lignocellulose conversion: enzymatic and microbial tools for bioethanol production. Springer, Berlin. ISBN 978-3642378607

    Book  Google Scholar 

  • Fasahati P, Woo HC, Liu JJ (2015) Industrial-scale bioethanol production from brown algae: effects of pretreatment processes on plant economics. Appl Energy 139:175–187

    Article  Google Scholar 

  • Fei Q, Guarnieri MT, Tao L, Laurens LML, Dowe N, Pienkos PT (2014) Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 32(3):596–614

    Article  Google Scholar 

  • Gendy TS, El-Temtamy SA (2013) Commercialization potential aspects of microalgae for biofuel production: an overview. Egypt J Pet 22(1):43–51

    Article  Google Scholar 

  • Gong J, Zhang S, Cheng Y, Huang Z, Tang C, Zhang J (2015) A comparative study of n-propanol, propanal, acetone, and propane combustion in laminar flames. Proc Combust Inst 35(1):795–801

    Article  Google Scholar 

  • Graham JE, Clark ME, Nadler DC, Huffer S, Chokhawala HA, Rowland SE, Blanch HW, Clark DS, Robb FT (2011) Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment. Nat Commun 2:375. doi:10.1038/ncomms1373

    Article  Google Scholar 

  • Gupta VK, Tuohy MG (2013) Biofuel technologies: recent developments. Springer, Berlin. ISBN 978-3-642-34518-0

    Book  Google Scholar 

  • Harnisch F, Blei I, dos Santos TR, Möller M, Nilges P, Eilts P, Schröder U (2013) From the test-tube to the test-engine: assessing the suitability of prospective liquid biofuel compounds. RSC Adv 3:9594–9605

    Article  Google Scholar 

  • Hartmut M The nonsense of biofuels.http://onlinelibrary.wiley.com/doi/10.1002/anie.201200218/pdf. Accessed 4 May 2015

  • Hess M (2008) Thermoacidophilic proteins for biofuel production. Trends Microbiol 16(9):414–419. doi:10.1016/j.tim.2008.06.001. Epub 6 Aug 2008

    Article  Google Scholar 

  • Inderwildi OR, King DA (2009) Quo vadis biofuels? Energy Environ Sci 2:343–346. doi:10.1039/b822951c

    Article  Google Scholar 

  • International Air Transport Association (IATA) (2009) A global approach to reducing aviation emissions. http://www.iata.org/SiteCollectionDocuments/Documents/Global_Approach_Reducing_Emissions_251109web.pdf

  • Jiang Z, Xiao T, Kuznetsov VL, Edwards PP (2010) Turning carbon dioxide into fuel. doi:10.1098/rsta.2010.0119Published, http://rsta.royalsocietypublishing.org/content/368/1923/3343

  • Kamm B, Gruber PR, Kamm M (2010) Biorefineries – industrial processes and products: status quo and future directions. Wiley-VCH. ISBN 978-3527329533

    Google Scholar 

  • Kang L (2014) Biofuel experiences in China, Governance and Market Development Updates, the 6th Stakeholder Plenary Meeting of EBTP. European Biofuels Technology Platform, , Brussels, 14–15 Oct 2014. http://www.biofuelstp.eu/spm6/docs/liping-kang.pdf

  • Kao P-M, Hsu B-M, Huang K-H, Tao C-W, Chang C-M, Ji W-T (2014) Biohydrogen production by immobilized co-culture of Clostridium butyricum and Rhodopseudomonas palustris. Energy Procedia 61:834–837

    Article  Google Scholar 

  • Kleinová A, Cvengrošová Z, Rimarcík J, Buzetzki E, Mikulec J, Cvengroš J (2012) Biofuels from algae. Procedia Eng 42:231–238

    Article  Google Scholar 

  • Koschelnik J, Epp M, Vogl W, Stadler P, Lackner M (2014) MFU/100ml: new measurement parameter for rapid enzymatic monitoring of fecal-associated indicator bacteria in water, 2014 water & health conference. UNC Water Institute

    Google Scholar 

  • Kuckshinrichs W, Hake J-F (eds) (2014) Carbon capture, storage and use: technical, economic, environmental and societal perspectives. Springer, Cham. ISBN 978-3319119427

    Google Scholar 

  • Lackner M, Winter F, Palotas A (2013) Combustion: from basics to applications. Wiley-VCH, Weinheim. ISBN 978-3-527-33376-9

    Book  Google Scholar 

  • Leite GB, Hallenbeck PC (2014) Chapter 22 – engineered cyanobacteria: research and application in bioenergy. In: Bioenergy research: advances and applications. pp 389–406

    Google Scholar 

  • Linstrom PJ, Mallard WG (2015) NIST chemistry WebBook. NIST Standard Reference, Database Number 69, National Institute of Standards and Technology, Gaithersburg, 20899. http://webbook.nist.gov

  • Louis E, Arkoudeas P (2012) Lubricating aspects of automotive fuels In: Carmo JP, Ribeiro JE (eds) New advances in vehicular technology and automotive engineering. InTech. doi:10.5772/2617. ISBN 978-953-51-0698-2, 410 pp

    Google Scholar 

  • Lu X (2010) A perspective: photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnol Adv 28(6):742–746

    Article  Google Scholar 

  • Lü J, Sheahan C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4:2451–2466. doi:10.1039/C0EE00593B

    Article  Google Scholar 

  • Markiewicz MEP, Bergens SH (2010) A liquid electrolyte alkaline direct 2-propanol fuel cell. J Power Sources 195(21):7196–7201

    Article  Google Scholar 

  • Mazzoli R (2012) Development of microorganisms for cellulose-biofuel consolidated bioprocessings: metabolic engineers’ tricks. Comput Struct Biotechnol J 3(4):1–9

    Article  Google Scholar 

  • Miller K (2013) Archaeologists find earliest evidence of humans cooking with fire, discover. http://discovermagazine.com/2013/may/09-archaeologists-find-earliest-evidence-of-humans-cooking-with-fire. Accessed 4 May 2015

  • Minteer SD (2011) 11 – Biochemical production of other bioalcohols: biomethanol, biopropanol, bioglycerol, and bioethylene glycol. In: Handbook of biofuels production. pp 258–265

    Google Scholar 

  • Mohr A, Raman S (2013) Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels. Energy Policy 63:114–122

    Article  Google Scholar 

  • Muller EEL, Sheik AR, Wilmes P (2014) Lipid-based biofuel production from wastewater. Curr Opin Biotechnol 30:9–16

    Article  Google Scholar 

  • Nozzi NE, Oliver JWK, Atsumi S (2013) Cyanobacteria as a platform for biofuel production. Front Bioeng Biotechnol. doi:10.3389/fbioe.2013.00007

    Google Scholar 

  • NREL (2009) Biodiesel handling and use guide, 4th edn. National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Olah GA, Goeppert A, Surya Prakash GK (2006) Beyond oil and gas: the methanol economy. Wiley-VCH, Weinheim. ISBN 978-3527312757

    Google Scholar 

  • Panichelli L, Gnansounou E (2015) Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: key modelling choices. Renew Sustain Energy Rev 42:344–360

    Article  Google Scholar 

  • Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102(22):10163–10172

    Article  Google Scholar 

  • Peralta-Yahya PP, Ouellet M, Chan R, Mukhopadhyay A, Keasling JD, Lee TS (2011) Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2:483

    Article  Google Scholar 

  • Philbrook A, Alissandratos A, Easton CJ (2013) Biochemical processes for generating fuels and commodity chemicals from lignocellulosic biomass. http://cdn.intechopen.com/pdfs-wm/42494.pdf

  • Rogers JN, Rosenberg JN, Guzman BJ, Oh VH, Mimbela LE, Ghassemi A, Betenbaugh MJ, Oyler GA, Donohue MD (2014) A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. Algal Res 4:76–88

    Article  Google Scholar 

  • Romano MC, Anantharaman R, Arasto A, Ozcan DC, Ahn H, Dijkstra JW, Carbo M, Boavida D (2013) Application of advanced technologies for CO2 capture from industrial sources. Energy Procedia 37:7176–7185

    Article  Google Scholar 

  • Ruffing AM (2013) Metabolic engineering of hydrocarbon biosynthesis for biofuel production. http://cdn.intechopen.com/pdfs-wm/43693.pdf. Accessed 4 May 2015

  • Savakis P, Hellingwerf KJ (2015) Engineering cyanobacteria for direct biofuel production from CO2. Curr Opin Biotechnol 33:8–14

    Article  Google Scholar 

  • Savvidis D, Sitnik L (2010) Investigation of three different mixtures of ecofuels used on a Perkins engine on a test bed. SAE technical paper 2010-01-1970. doi:10.4271/2010-01-1970

    Google Scholar 

  • Schipper K, van der Gijp S, van der Stel R, Goetheer E (2013) New methodologies for the integration of power plants with algae ponds. Energy Procedia 37:6687–6695

    Article  Google Scholar 

  • Singh A, Olsen SI, Nigam PS (2011) A viable technology to generate third-generation biofuel. J Chem Technol Biotechnol 86:1349–1353

    Article  Google Scholar 

  • Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53:29–38

    Article  Google Scholar 

  • Stefan B, Helmut S, Meghan O, Lea K, Robert WH, Jeff M. UNEP, towards sustainable production and use of resources: assessing biofuels. http://www.unep.org/pdf/Assessing_Biofuels-full_report-Web.pdf. Accessed 4 May 2015

  • Steinhoff FS, Karlberg M, Graeve M, Wulff A (2014) Cyanobacteria in Scandinavian coastal waters – a potential source for biofuels and fatty acids? Algal Res 5:42–51

    Article  Google Scholar 

  • Subject areas, Macmillan Publishers Limited (2015) http://www.nature.com/subjects/metabolic-engineering

  • Tian G, Daniel R, Xu H (2011) DMF – a new biofuel candidate. http://cdn.intechopen.com/pdfs/20072/InTech-Dmf_a_new_biofuel_candidate.pdf

  • Ullah K, Ahmad M, Sofia, Sharma VK, Lu P, Harvey A, Zafar M, Sultana S, Anyanwu CN (2014) Algal biomass as a global source of transport fuels: overview and development perspectives. Prog Nat Sci Mater Int 24(4):329–339

    Article  Google Scholar 

  • Viswanath DS, Ghosh TK, Prasad DHL, Dutt NVK, Rani KY (2007) Viscosity of liquids: theory, estimation, experiment, and data. Springer, Dordrecht

    Google Scholar 

  • Voelcker J (2014) 1.2 billion vehicles on world’s roads now, 2 billion by 2035. http://www.greencarreports.com/news/1093560_1-2-billion-vehicles-on-worlds-roads-now-2-billion-by-2035-report

  • Wang T, Li Y, Ma L, Wu C (2011) Biomass to dimethyl ether by gasification/synthesis technology – an alternative biofuel production route. Front Energy 5(3):330–339. 8 Sept 2010

    Google Scholar 

  • Weinebeck A, Murrenhoff H (2013) Lubricity of new tailor-made fuels from biomass. In: Proceedings of the 13th Scandinavian international conference on fluid power – SICFP2013, Linköping

    Google Scholar 

  • What is MTBE? (2015) http://www.cancer.org/cancer/cancercauses/othercarcinogens/pollution/mtbe. Accessed 5 May 2015

  • Winchester N, McConnachie D, Wollersheim C, Waitz IA (2013) Economic and emissions impacts of renewable fuel goals for aviation in the US. Transp Res A Policy Pract 58:116–128

    Article  Google Scholar 

  • Yu D, Wang G, Xu F, Chen L (2012) Constitution and optimization on the performance of microbial fuel cell based on sulfate-reducing bacteria. Energy Procedia 16(Part C):1664–1670

    Google Scholar 

  • Zhang YH (2014) Production of biofuels and biochemicals by in vitro synthetic biosystems: opportunities and challenges. Biotechnol Adv. doi:10.1016/j.biotechadv.2014.10.009. pii: S0734-9750(14)00158-X

    Google Scholar 

  • Zhao B, Su Y (2014) Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew Sustain Energy Rev 31:121–132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Lackner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Lackner, M. (2015). 3rd-Generation Biofuels: Bacteria and Algae as Sustainable Producers and Converters. In: Chen, WY., Suzuki, T., Lackner, M. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6431-0_90-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6431-0_90-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6431-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Third-Generation Biofuels: Bacteria and Algae for Better Yield and Sustainability
    Published:
    29 April 2021

    DOI: https://doi.org/10.1007/978-1-4614-6431-0_90-2

  2. Original

    -Generation Biofuels: Bacteria and Algae as Sustainable Producers and Converters
    Published:
    17 June 2015

    DOI: https://doi.org/10.1007/978-1-4614-6431-0_90-1