Skip to main content

Low-Temperature Fuel Cell Technology for Green Energy

  • Living reference work entry
  • First Online:
Handbook of Climate Change Mitigation and Adaptation
  • 358 Accesses

Abstract

Fuel cells convert chemical energy to electrical energy via an electrochemical reaction. They are more efficient than traditional heat engine-based power systems and can have zero or near-zero emissions during operation. A leading alternative green energy technology, fuel cells are finding applications in many areas, including transportation, portable power, and stationary power generation. These divergent uses have driven development of several different types of fuel cell technologies. A brief overview of these will be provided in this chapter; however, the focus will be on low-temperature proton exchange membrane (PEM) technologies predominant in portable power and automotive applications. Fuel cell operating principles will be reviewed, focusing on thermodynamics, efficiency, reaction kinetics, and transport phenomena in order to develop a framework for evaluating different fuel cells and comparing them with other power systems. Theoretically, much improvement in fuel cell performance is possible and is needed along with means of lowering economic costs in order for fuel cells to see more widespread use. Some of the major technical challenges in these regards are outlined along with approaches being investigated to meet these challenges. Life cycle assessment and its application to fuel cells will be discussed to evaluate environmental impacts associated with manufacturing, operation, and disposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alberti G, Casciola M (2001) Solid state protonic conductors, present main applications and future prospects. Solid State Ion 145:3–16

    Article  Google Scholar 

  • Alberti G, Casciola M (2003) Composite membranes for medium-temperature PEM fuel cells. Annu Rev Mater Res 33:129–154

    Article  Google Scholar 

  • Antolini E, Lopes T, Gonzalez ER (2008) An overview of platinum-based catalysts as methanol-resistant oxygen reduction materials for direct methanol fuel cells. J Alloys Compd 461:253–262

    Article  Google Scholar 

  • Arico AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  Google Scholar 

  • Ayres RU (1995) Life cycle analysis: a critique. Resour Conserv Recycl 14:199–223

    Article  Google Scholar 

  • Bai Y, Wu J, Xi J, Wang J, Zhu W, Chen L, Qiu X (2005) Electrochemical oxidation of ethanol on Pt-ZrO2/C catalyst. Electrochem Commun 7:1087–1090

    Article  Google Scholar 

  • Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  • Bar-On I, Kirchain R, Roth R (2002) Technical cost analysis for PEM fuel cells. J Power Sources 109:71–75

    Article  Google Scholar 

  • Barton SC, Gallaway J, Atanassov P (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem Rev 104:4867–4886

    Article  Google Scholar 

  • Bérubé V, Radtke G, Dresselhaus M, Chen G (2007) Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review. Int J Energy Res 31:637–663

    Article  Google Scholar 

  • Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP, Wang H, Zhang J (2008) A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction. Electrochim Acta 53:4937–4951

    Article  Google Scholar 

  • Bocchetta P, Chiavarotti G, Masi R, Sunseri C, Di Quarto F (2004) Nanoporous alumina membranes filled with solid acid for thin film fuel cells at intermediate temperatures. Electrochem Commun 6:923–928

    Article  Google Scholar 

  • Bockris JOM, Reddy AKN, Gamboa-Aldeco M (1998) Modern electrochemistry 2A: fundamentals of electrodics, 2nd edn. Kluwer/Plenum, New York

    Google Scholar 

  • Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biofuel cells and their development. Biosens Bioelectron 21:2015–2045

    Article  Google Scholar 

  • Camara GA, Ticianelli EA, Mukerjee S, Lee SJ, McBreen J (2002) The CO poisoning mechanism of the hydrogen oxidation reaction in proton exchange membrane fuel cells. J Electrochem Soc 149:A748

    Article  Google Scholar 

  • Cheng X, Zhang J, Tang Y, Song C, Shen J, Song D (2007) Hydrogen crossover in high-temperature PEM fuel cells. J Power Sources 167:25–31

    Article  Google Scholar 

  • Cho EA, Jeon US, Ha HY, Hong SA, Oh IH (2004) Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sources 125:178–182

    Article  Google Scholar 

  • Choi P, Jalani NH, Datta R (2005) Thermodynamics and proton transport in Nafion. II. Proton diffusion mechanisms and conductivity. J Electrochem Soc 152:E123–E130

    Article  Google Scholar 

  • Colomer MT, Anderson MA (2001) High porosity silica xerogels prepared by a particulate sol–gel route: pore structure and proton conductivity. J Non Cryst Solids 290:93–104

    Article  Google Scholar 

  • Cunningham B, Baird DG (2006) The development of economical bipolar plates for fuel cells. J Mater Chem 16:4385–4388

    Article  Google Scholar 

  • Cunningham BD, Huang J, Baird DG (2007) Review of materials and processing methods used in the production of bipolar plates for fuel cells. Int Mater Rev 52:1–13

    Article  Google Scholar 

  • Energy World (2004) Zero-emission fuel cell buses for 10 European cities. Energy World 18

    Google Scholar 

  • FCB (2003) NEC unveils fully integrated fuel cell notebook PC. Fuel Cells Bull 2003(8):1

    Google Scholar 

  • FCB (2004) In brief: fuel cell buses operational in Perth. Fuel Cells Bull 7

    Google Scholar 

  • FCB (2005) LG Chem commercializes portable fuel cell. Fuel Cells Bull 2005:5

    Google Scholar 

  • FCB (2007a) Honda to start leasing fuel cell cars in US. Fuel Cell Bull 2007:6

    Google Scholar 

  • FCB (2007b) In brief: ford, GM focused on contrasting records for their FCVs. Fuel Cell Bull 2007:11

    Google Scholar 

  • Feng Y, Alonso-Vante N (2008) Nonprecious metal catalysts for the molecular oxygen-reduction reaction. Phys Status Solidi B 245:1792–1806

    Article  Google Scholar 

  • Finkbeiner M, Inaba A, Tan RBH, Christiansen K, Klüppel HJ (2006) The new international standards for life cycle assessment: ISO 14040 and ISO 14044. Int J Life Cycle Assess 11:80–85

    Article  Google Scholar 

  • Gold S, Chu K-L, Lu C, Shannon MA, Masel RI (2004) Acid loaded porous silicon as a proton exchange membrane for micro-fuel cells. J Power Sources 135:198–203

    Article  Google Scholar 

  • Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764

    Article  Google Scholar 

  • Gülzow E (1996) Alkaline fuel cells: a critical view. J Power Sources 61:99–104

    Article  Google Scholar 

  • Hausdorf S, Baitalow F, Wolf G, Mertens FORL (2008) A procedure for the regeneration of ammonia borane from BNH-waste products. Int J Hydrog Energy 33:608–614

    Article  Google Scholar 

  • Haynes C (2001) Clarifying reversible efficiency misconceptions of high temperature fuel cells in relation to reversible heat engines. J Power Sources 92:199–203

    Article  Google Scholar 

  • Heinzel A, BarragÃn VM (1999) Review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J Power Sources 84:70–74

    Article  Google Scholar 

  • Heinzel A, Mahlendorf F, Niemzig O, Kreuz C (2004) Injection moulded low cost bipolar plates for PEM fuel cells. J Power Sources 131:35–40

    Article  Google Scholar 

  • Heller A (2004) Miniature biofuel cells. Phys Chem Chem Phys 6:209–216

    Article  Google Scholar 

  • Hermann A, Chaudhuri T, Spagnol P (2005) Bipolar plates for PEM fuel cells: a review. Int J Hydrog Energy 30:1297–1302

    Article  Google Scholar 

  • Hogarth MP, Ralph TR (2002) Catalysis for low temperature fuel cells. Part III: challenges for the direct methanol fuel cell. Platin Met Rev 46:146–164

    Google Scholar 

  • Hogarth WHJ, Diniz da Costa JC, Lu GQ (2005) Solid acid membranes for high temperature (>140°C) proton exchange membrane fuel cells. J Power Sources 142:223–237

    Article  Google Scholar 

  • Hoogers G (2003) Fuel cell technology handbook. CRC Press, Boca Raton

    Google Scholar 

  • Hubert M (2005) The grand challenge: hydrogen storage. Fuel Cell 5:20–22

    Google Scholar 

  • Ikeda T, Boero M, Huang SF, Terakura K, Oshima M, Ozaki JI (2008) Carbon alloy catalysts: active sites for oxygen reduction reaction. J Phys Chem C 112:14706–14709

    Article  Google Scholar 

  • Ioroi T, Kuraoka K, Yasuda K, Yazawa T, Miyazaki Y (2004) Surface-modified nanopore glass membrane as electrolyte for DMFCs. Electrochem Solid-State Lett 7:A394–A396

    Article  Google Scholar 

  • Jeong KS, Oh BS (2002) Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle. J Power Sources 105:58–65

    Article  Google Scholar 

  • Jiang R, Chu D (2004) Comparative studies of methanol crossover and cell performance for a DMFC. J Electrochem Soc 151:A69–A76

    Article  Google Scholar 

  • Kerres JA (2001) Development of ionomer membranes for fuel cells. J Membr Sci 185:3–27

    Article  Google Scholar 

  • Kerres J, Hein M, Zhang W, Graf S, Nicoloso N (2003) Development of new blend membranes for polymer electrolyte fuel cell applications. J New Mater Electrochem Syst 6:223–229

    Google Scholar 

  • Knauth P, Tuller HL (2002) Solid-state ionics: roots, status, and future prospects. J Am Ceram Soc 85:1654–1680

    Article  Google Scholar 

  • Kuan HC, Ma CCM, Chen KH, Chen SM (2004) Preparation, electrical, mechanical and thermal properties of composite bipolar plate for a fuel cell. J Power Sources 134:7–17

    Article  Google Scholar 

  • Larminie J, Dicks A (2003) Fuel cell systems explained. Wiley, Hoboken

    Book  Google Scholar 

  • Larsen R, Ha S, Zakzeski J, Masel RI (2006) Unusually active palladium-based catalysts for the electrooxidation of formic acid. J Power Sources 157:78–84

    Article  Google Scholar 

  • Lefévre M, Dodelet JP (2003) Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions: determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts. Electrochim Acta 48:2749–2760

    Article  Google Scholar 

  • Liu Z, Hong L, Tham MP, Lim TH, Jiang H (2006a) Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells. J Power Sources 161:831–835

    Article  Google Scholar 

  • Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson DP (2006b) A review of anode catalysis in the direct methanol fuel cell. J Power Sources 155:95–110

    Article  Google Scholar 

  • Lutz AE, Larson RS, Keller JO (2002) Thermodynamic comparison of fuel cells to the Carnot cycle. Int J Hydrog Energy 27:1103–1111

    Article  Google Scholar 

  • Marder TB (2007) Will we soon be fueling our automobiles with ammonia-borane? Angew Chem Int Ed 46:8116–8118

    Article  Google Scholar 

  • McLean GF, Niet T, Prince-Richard S, Djilali N (2002) An assessment of alkaline fuel cell technology. Int J Hydrog Energy 27:507–526

    Article  Google Scholar 

  • Neburchilov V, Martin J, Wang H, Zhang J (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169:221–238

    Article  Google Scholar 

  • Neurock M, Janik M, Wieckowski A (2008) A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss 140:363–378

    Article  Google Scholar 

  • Nguyen PT, Berning T, Djilali N (2004) Computational model of a PEM fuel cell with serpentine gas flow channels. J Power Sources 130:149–157

    Article  Google Scholar 

  • Ogden JM, Williams RH, Larson ED (2004) Societal lifecycle costs of cars with alternative fuels/engines. Energy Policy 32:7–27

    Article  Google Scholar 

  • O’Hayre R, Cha S-W, Colella W, Prinz FB (2009) Fuel cell fundamentals, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Oil Gas European Magazine (2001) On road to world’s first hydrogen economy. Oil Gas Eur Mag 27:9

    Google Scholar 

  • Panella B, Hirscher M (2005) Hydrogen physisorption in metal-organic porous crystals. Adv Mater 17:538–541

    Article  Google Scholar 

  • Park Y-I, Nagai M, Kim J-D, Kobayashi K (2004) Inorganic proton-conducting gel glass/porous alumina nanocomposite. J Power Sources 137:175–182

    Article  Google Scholar 

  • Parsons R, VanderNoot T (1988) The oxidation of small organic molecules. A survey of recent fuel cell related research. J Electroanal Chem 257:9–45

    Article  Google Scholar 

  • Pehnt M (2001) Life-cycle assessment of fuel cell stacks. Int J Hydrog Energy 26:91–101

    Article  Google Scholar 

  • Pehnt M (2003) Assessing future energy and transport systems: the case of fuel cells. Part I: methodological aspects. Int J Life Cycle Assess 8:283–289

    Article  Google Scholar 

  • Perry ML, Fuller TF (2002) A historical perspective of fuel cell technology in the 20th century. J Electrochem Soc 149(7):S59–S67

    Article  Google Scholar 

  • Piela P, Eickes C, Brosha E, Garzon F, Zelenay P (2004) Ruthenium crossover in direct methanol fuel cell with Pt-Ru black anode. J Electrochem Soc 151:A2053–A2059

    Article  Google Scholar 

  • Ralph TR, Hogarth MP (2002) Catalysis for low temperature fuel cells. Part I: the cathode challenges. Platin Met Rev 46:3–14

    Google Scholar 

  • Reap J, Roman F, Duncan S, Bras B (2008a) A survey of unresolved problems in life cycle assessment. Part 1: goal and scope and inventory analysis. Int J Life Cycle Assess 13:290–300

    Article  Google Scholar 

  • Reap J, Roman F, Duncan S, Bras B (2008b) A survey of unresolved problems in life cycle assessment. Part 2: impact assessment and interpretation. Int J Life Cycle Assess 13:374–388

    Article  Google Scholar 

  • Rhee YW, Ha SY, Masel RI (2003) Crossover of formic acid through Nafion® membranes. J Power Sources 117:35–38

    Article  Google Scholar 

  • Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: a review. Int J Hydrog Energy 32:1121–1140

    Article  Google Scholar 

  • Sawyer DT, Andrzej S, Julian LR Jr (1995) Electrochemistry for chemists, 2nd edn. Wiley, New York

    Google Scholar 

  • Scholta J, Rohland B, Trapp V, Focken U (1999) Investigations on novel low-cost graphite composite bipolar plates. J Power Sources 84:231–234

    Article  Google Scholar 

  • Schüth F, Bogdanović B, Felderhoff M (2004) Light metal hydrides and complex hydrides for hydrogen storage. Chem Commun 10:2249–2258

    Article  Google Scholar 

  • Shiraishi M, Takenobu T, Kataura H, Ata M (2004) Hydrogen adsorption and desorption in carbon nanotube systems and its mechanisms. Appl Phys A 78:947–954

    Article  Google Scholar 

  • Shukla AK, Suresh P, Berchmans S, Rajendran A (2004) Biological fuel cells and their applications. Curr Sci 87:455–468

    Google Scholar 

  • Song H, Qiu X, Li F (2008) Effect of heat treatment on the performance of TiO2-Pt/CNT catalysts for methanol electrooxidation. Electrochim Acta 53:3708–3713

    Article  Google Scholar 

  • Srinivasan S, Renaut M, Phillippe S, Christopher Y (1999) Fuel cells: reaching the era of clean and efficient power generation in the twenty-first century. Annu Rev Energy Environ 24:281–328

    Article  Google Scholar 

  • Stephens FH, Pons V, Baker RT (2007) Ammonia-borane: the hydrogen source par excellence? Dalton Trans 25:2613–2626

    Article  Google Scholar 

  • Tawfik H, Hung Y, Mahajan D (2007) Metal bipolar plates for PEM fuel cell – a review. J Power Sources 163:755–767

    Article  Google Scholar 

  • Thomas KM (2007) Hydrogen adsorption and storage on porous materials. Catal Today 120:389–398

    Article  Google Scholar 

  • US Department of Energy (2002) National hydrogen energy roadmap. US Office of Energy Efficiency and Renewable Energy, Washington, DC

    Google Scholar 

  • Van Den Berg AWC, Areán CO (2008) Materials for hydrogen storage: current research trends and perspectives. Chem Commun 6:668–681

    Article  Google Scholar 

  • Vichi FM, Colomer MT, Anderson MA (1999) Nanopore ceramic membranes as novel electrolytes for proton exchange membranes. Electrochem Solid-State Lett 2:313–316

    Article  Google Scholar 

  • Wang B (2005) Recent development of non-platinum catalysts for oxygen reduction reaction. J Power Sources 152:1–15

    Article  Google Scholar 

  • Wang H, Holmberg BA, Huang L, Wang Z, Mitra A, Norbeck JM, Yan Y (2002) Nafion-bifunctional silica composite proton conductive membranes. J Mater Chem 12:834–837

    Article  Google Scholar 

  • Wasmus S, Küver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461:14–31

    Article  Google Scholar 

  • Wee JH, Lee KY (2006) Overview of the development of CO-tolerant anode electrocatalysts for proton-exchange membrane fuel cells. J Power Sources 157:128–135

    Article  Google Scholar 

  • Wright SE (2004) Comparison of the theoretical performance potential of fuel cells and heat engines. Renew Energy 29:179–195

    Article  Google Scholar 

  • Yamanaka S, Fujikane M, Uno M, Murakami H, Miura O (2004) Hydrogen content and desorption of carbon nano-structures. J Alloys Compd 366:264–268

    Article  Google Scholar 

  • Yu X, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182:124–132

    Article  Google Scholar 

  • Zawodzinski TA Jr, Springer TE, Davey J, Jestel R, Lopez C, Valerio J, Gottesfeld S (1993a) A comparative study of water uptake by and transport through ionomeric fuel cell membranes. J Electrochem Soc 140:1981–1985

    Article  Google Scholar 

  • Zawodzinski TA Jr, Derouin C, Radzinski S, Sherman RJ, Smith VT, Springer TE, Gottesfeld S (1993b) Water uptake by and transport through Nafion 117 membranes. J Electrochem Soc 140:1041–1047

    Article  Google Scholar 

  • Züttel A (2004) Hydrogen storage methods. Naturwissenschaften 91:157–172

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Gold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Gold, S.A. (2015). Low-Temperature Fuel Cell Technology for Green Energy. In: Chen, WY., Suzuki, T., Lackner, M. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6431-0_43-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6431-0_43-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6431-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics