Reducing Greenhouse Gas Emissions with CO2 Capture and Geological Storage

  • J. Marcelo Ketzer
  • Rodrigo S. Iglesias
  • Sandra Einloft
Living reference work entry


CO2 capture and geological storage (CCS) is one of the most promising technologies to reduce greenhouse gas emissions and mitigate climate change in a fossil fuel-dependent world. If fully implemented, CCS may contribute to reduce 20 % of global emissions from fossil fuels by 2050 and 55 % by the end of this century. The complete CCS chain consists of capturing CO2 from large stationary sources such as coal-fired power plants and heavy industries and transport and store it in appropriate geological reservoirs such as petroleum fields, saline aquifers, and coal seams, therefore returning carbon emitted from fossil fuels (as CO2) back to geological sinks.

Recent studies have shown that geological reservoirs can safely store for many centuries the entire greenhouse gas (GHG) global emissions. In this chapter, we present a comprehensive summary of the latest advances in CCS research and technologies that can be used to store significant quantities of CO2 for geological periods of time and therefore considerably contribute to GHG emission reduction.


Adsorption trapping Amine Caprock Carbon capture and storage Carbonate CCS Chemical looping Cleat system CO2 capture CO2 separation CO2 solubility CO2 source CO2 storage Coal Coal field Dissolution trapping Enhanced coalbed methane recovery Enhanced oil recovery Flue gas Geochemical modeling Geological media Greenhouse gas Hydrodynamic trapping Injectivity Ionic liquid Mineral dissolution Mineralization trapping Monitoring Numerical modeling Numerical simulation Oil and gas field Oil field Pore volume Reactive transport Reservoir Reservoir rock Reservoir simulation Residual trapping Saline aquifer Sandstone Sedimentary rock Stationary source Storage capacity Storage safety Storage site Stratigraphic trapping Structural trapping Syngas Trapping mechanism 


  1. Abad A, Mattisson T, Lyngfelt A, Rydén M (2006) Chemical-looping combustion in a 300 W continuously operating reactor system using a manganese-based oxygen carrier. Fuel 85:1174–1185. doi:10.1016/j.fuel.2005.11.014CrossRefGoogle Scholar
  2. Anderson JL, Dixon JK, Maginn EJ, Brennecke JF (2006) Measurement of SO2 solubility in ionic liquids. J Phys Chem B 110:15059–15062. doi:10.1021/jp063547uCrossRefGoogle Scholar
  3. Anthony JL, Anderson JL, Maginn EJ, Brennecke JF (2005) Anion effects on gas solubility in ionic liquids. J Phys Chem B 109:6366–6374. doi:10.1021/jp046404lCrossRefGoogle Scholar
  4. Arts R, Winthaegen P (2005) Monitoring options for CO2 storage. In: Benson SM (ed) Carbon dioxide capture for storage in deep geologic formations: results from the CO2 capture project, vol 2. Elsevier, Amsterdam, pp 1001–1014CrossRefGoogle Scholar
  5. Bachu S (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environ Geol 44:277–289CrossRefGoogle Scholar
  6. Bachu S, Bonijoly D, Bradshaw J et al (2007) CO2 storage capacity estimation: methodology and gaps. Int J Greenh Gas Control 1:430–443CrossRefGoogle Scholar
  7. Baines SJ, Worden RH (2004) The long-term fate of CO2 in the subsurface: natural analogues for CO2 storage. In: Baines SJ, Worden RH (eds) Geological storage on carbon dioxide. Geological Society, London, pp 59–85Google Scholar
  8. Bara JE, Camper DE, Gin DL, Noble RD (2009a) Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture. Acc Chem Res 43:152–159. doi:10.1021/ar9001747CrossRefGoogle Scholar
  9. Bara JE, Carlisle TK, Gabriel CJ et al (2009b) Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind Eng Chem Res 48:2739–2751. doi:10.1021/ie8016237CrossRefGoogle Scholar
  10. Beck B, Cunha P, Ketzer M et al (2011) The current status of CCS development in Brazil. Energy Procedia 4:6148–6151. doi:10.1016/j.egypro.2011.02.623CrossRefGoogle Scholar
  11. Benson S (2007) Monitoring geological storage of carbon dioxide. In: Wilson EJ, Gerard D (eds) Carbon capture and sequestration: integrating technology, monitoring, regulation. Blackwell, Ames, pp 73–100Google Scholar
  12. Benson SM, Cole DR (2008) CO2 sequestration in deep sedimentary formations. Elements 4:325–331CrossRefGoogle Scholar
  13. Bentham M, Kirby G (2005) CO2 storage in saline aquifers. Oil Gas Sci Technol L Inst Fr Du Pet 60:559–567CrossRefGoogle Scholar
  14. Blasig A, Tang J, Hu X et al (2007) Magnetic suspension balance study of carbon dioxide solubility in ammonium-based polymerized ionic liquids: Poly(p-vinylbenzyltrimethyl ammonium tetrafluoroborate) and poly([2-(methacryloyloxy)ethyl] trimethyl ammonium tetrafluoroborate). Fluid Phase Equilib 256:75–80. doi:10.1016/j.fluid.2007.03.007CrossRefGoogle Scholar
  15. Blomen E, Hendriks C, Neele F (2009) Capture technologies: improvements and promising developments. Energy Procedia 1:1505–1512. doi:10.1016/j.egypro.2009.01.197CrossRefGoogle Scholar
  16. Blunt M, Fayers FJ, Orr FM Jr (1993) Carbon dioxide in enhanced oil recovery. Energy Convers Manag 34:1197–1204. doi:10.1016/0196-8904(93)90069-mCrossRefGoogle Scholar
  17. Boundary Dam Carbon Capture Project. (2015) Accessed 22 Jan 2015
  18. Bradshaw J, Bachu S, Bonijoly D et al (2007) CO2 storage capacity estimation: issues and development of standards. Int J Greenh Gas Control 1:62–68CrossRefGoogle Scholar
  19. Carvalho PJ, Álvarez VH, Machado JJB et al (2009) High pressure phase behavior of carbon dioxide in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids. J Supercrit Fluids 48:99–107. doi:10.1016/j.supflu.2008.10.012CrossRefGoogle Scholar
  20. Corbella BM, de Diego L, García-Labiano F et al (2005) Characterization and performance in a multicycle test in a fixed-bed reactor of silica-supported copper oxide as oxygen carrier for chemical-looping combustion of methane. Energy & Fuels 20:148–154. doi:10.1021/ef050212nCrossRefGoogle Scholar
  21. Day S, Fry R, Sakurovs R, Weir S (2010) Swelling of coals by supercritical gases and its relationship to sorption. Energy & Fuels 24:2777–2783. doi:10.1021/ef901588hCrossRefGoogle Scholar
  22. De Diego LF, Gayan P, Garcia-Labiano F et al (2005) Impregnated CuO/Al2O3 oxygen carriers for chemical-looping combustion: avoiding fluidized bed agglomeration. Energy & Fuels 19:1850–1856. doi:10.1021/ef050052fCrossRefGoogle Scholar
  23. Feron PHM (2010) Exploring the potential for improvement of the energy performance of coal fired power plants with post-combustion capture of carbon dioxide. Int J Greenh Gas Control 4:152–160. doi:10.1016/j.ijggc.2009.10.018CrossRefGoogle Scholar
  24. Feron PHM, Hendriks CA (2005) Les différents procédés de capture du CO2 et leurs coûts. Oil Gas Sci Technol – Rev IFP 60:451–459CrossRefGoogle Scholar
  25. Figueroa JD, Fout T, Plasynski S et al (2008) Advances in CO2 capture technology – The U.S. Department of Energy’s Carbon Sequestration Program. Int J Greenh Gas Control 2:9–20. doi:10.1016/s1750-5836(07)00094-1CrossRefGoogle Scholar
  26. Franz J, Scherer V (2010) An evaluation of CO2 and H2 selective polymeric membranes for CO2 separation in IGCC processes. J Memb Sci 265:9. doi:10.1016/j.memsci.2010.01.047Google Scholar
  27. Gale J, Freund P (2001) Coal-bed methane enhancement with CO2 sequestration worldwide potential. Environ Geosci 8:210–217CrossRefGoogle Scholar
  28. García-Pérez E, Parra JB, Ania CO et al (2007) A computational study of CO2, N2, and CH4 adsorption in zeolites. Adsorption 13:469–476. doi:10.1007/s10450-007-9039-zCrossRefGoogle Scholar
  29. Gaus I (2010) Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks. Int J Greenh Gas Control 4:73–89. doi:10.1016/j.ijggc.2009.09.015CrossRefGoogle Scholar
  30. GC Institute (2014) Petrobras Lula oil field CCS project. Accessed 22 Jan 2015
  31. GCCSI (2011) Accelerating the uptake of CCS: industrial use of captured carbon dioxide. Global CCS Institute, CanberraGoogle Scholar
  32. GCSSI (2014) The global status of CCS. Global CCS Institute, CanberraGoogle Scholar
  33. Gozalpour F, Ren SR, Tohidi B (2005) CO2 EOR and storage in oil reservoirs. Oil Gas Sci Technol L Inst Fr Du Pet 60:537–546CrossRefGoogle Scholar
  34. Gunter WD, Bachu S, Benson S (2004) The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide. In: Baines SJ, Worden RH (eds) Geological storage of carbon dioxide. Geological Society, London, pp 129–145Google Scholar
  35. Hicks JC, Drese JH, Fauth DJ et al (2008) Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. J Am Chem Soc 130:2902–2903. doi:10.1021/ja077795vCrossRefGoogle Scholar
  36. Holt T, Jensen JI, Lindeberg E (1995) Underground storage of CO2 in aquifers and oil reservoirs. Energy Convers Manag 36:535–538CrossRefGoogle Scholar
  37. IEA (2008a) Energy technology perspectives: scenarios and strategies to 2050. International Energy Agency, ParisGoogle Scholar
  38. IEA (2008b) CO2 capture and storage: a key carbon abatement option. International Energy Agency, ParisGoogle Scholar
  39. IEA (2009) Technology roadmap – carbon capture and storage. International Energy Agency, ParisGoogle Scholar
  40. IEA (2012) Energy technology perspectives. International Energy Agency, ParisGoogle Scholar
  41. IEA (2013) Technology roadmap – carbon capture and storage. International Energy Agency, ParisGoogle Scholar
  42. IEA Greenhouse Gas R&D Programme (2001) Putting carbon back into the ground. In: Davidson J, Freud P, Smith A (eds). IEA Greenhouse Gas R&D Programme, Paris Google Scholar
  43. IEA Greenhouse Gas R&D Programme (2004) IEA GHG Weyburn CO2 monitoring & storage. Petroleum Technology Research Centre, Regina, CanadaGoogle Scholar
  44. IPCC (2005) Special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge, UKGoogle Scholar
  45. IPCC (2014) Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New YorkGoogle Scholar
  46. Kanniche M, Gros-Bonnivard R, Jaud P et al (2010) Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl Therm Eng 30:53–62. doi:10.1016/j.applthermaleng.2009.05.005CrossRefGoogle Scholar
  47. Kaszuba JP, Janecky DR, Snow MG (2003) Carbon dioxide reaction processes in a model brine aquifer at 200°C and 200 bars: implications for geologic sequestration of carbon. Appl Geochemistry 18:1065–1080. doi:10.1016/s0883-2927(02)00239-1CrossRefGoogle Scholar
  48. Kaszuba J, Yardley B, Andreani M (2013) Experimental perspectives of mineral dissolution and precipitation due to carbon dioxide-water-rock interactions. Rev Mineral Geochemistry 77:153–188CrossRefGoogle Scholar
  49. Katz DL, Tek MR (1981) Overview of underground storage of natural gas. J Pet Technol 33:943–951CrossRefGoogle Scholar
  50. Ketzer JM, Iglesias R, Einloft S et al (2009) Water-rock-CO2 interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil. Appl Geochemistry 24:760–767. doi:10.1016/j.apgeochem.2009.01.001CrossRefGoogle Scholar
  51. Kong Y, Jiang G, Fan M et al (2014) A new aerogel based CO2 adsorbent developed using a simple sol–gel method along with supercritical drying. Chem Commun 50:12158–12161. doi:10.1039/C4CC06424KCrossRefGoogle Scholar
  52. Korbøl R, Kaddour A (1995) Sleipner vest CO2 disposal – injection of removed CO2 into the utsira formation. Energy Convers Manag 36:509–512CrossRefGoogle Scholar
  53. Kothandaraman A, Nord L, Bolland O et al (2009) Comparison of solvents for post-combustion capture of CO2 by chemical absorption. Energy Procedia 1:1373–1380. doi:10.1016/j.egypro.2009.01.180CrossRefGoogle Scholar
  54. Kumar S, Cho JH, Moon I (2014) Ionic liquid-amine blends and CO2BOLs: prospective solvents for natural gas sweetening and CO2 capture technology – a review. Int J Greenh Gas Control 20:87–116. doi:10.1016/j.ijggc.2013.10.019CrossRefGoogle Scholar
  55. Large Scale CCS Projects. (2015) Accessed 22 Jan 2015
  56. Lasaga AC (1984) Chemical kinetics of water-rock interactions. J Geophys Res 89:4009–4025. doi:10.1029/JB089iB06p04009CrossRefGoogle Scholar
  57. Le Quéré C, Moriarty R, Andrew RM et al (2014) Global carbon budget 2014. Earth Syst Sci Data Discuss 7:521–610. doi:10.5194/essdd-7-521-2014CrossRefGoogle Scholar
  58. Lepaumier H, Picq D, Carrette PL (2009) Degradation study of new solvents for CO2 capture in post-combustion. Energy Procedia 1:893–900. doi:10.1016/j.egypro.2009.01.119CrossRefGoogle Scholar
  59. Li B, Duan Y, Luebke D, Morreale B (2013) Advances in CO2 capture technology: a patent review. Appl Energy 102:1439–1447. doi:10.1016/j.apenergy.2012.09.009CrossRefGoogle Scholar
  60. Luquot L, Gouze P (2009) Experimental determination of porosity and permeability changes induced by injection of CO2 into carbonate rocks. Chem Geol 265:148–159. doi:10.1016/j.chemgeo.2009.03.028CrossRefGoogle Scholar
  61. Magalhaes TO, Aquino AS, Vecchia FD et al (2014) Syntheses and characterization of new poly(ionic liquid)s designed for CO2 capture. RSC Adv 4:18164–18170. doi:10.1039/C4RA00071DCrossRefGoogle Scholar
  62. Markewitz P, Kuckshinrichs W, Leitner W et al (2012) Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ Sci 5:7281–7305. doi:10.1039/C2EE03403DCrossRefGoogle Scholar
  63. Millward AR, Yaghi OM (2005) Metal−Organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999. doi:10.1021/ja0570032CrossRefGoogle Scholar
  64. Muldoon MJ, Aki SNVK, Anderson JL et al (2007) Improving carbon dioxide solubility in ionic liquids. J Phys Chem B 111:9001–9009. doi:10.1021/jp071897qCrossRefGoogle Scholar
  65. NEA (2008) Moving forward with geological disposal of radioactive waste. Nuclear Energy Agency, ParisGoogle Scholar
  66. NETL (2010) Carbon dioxide enhanced oil recovery [internet]. Available from: library/research/oil-gas/CO2_EOR_Primer.pdfGoogle Scholar
  67. Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305:968–972CrossRefGoogle Scholar
  68. Palandri JL, Kharaka YK (2004) A compilation of rate parameters of water-mineral interaction for application to geochemical modeling. U.S. Geological Survey, Menlo Park, CAGoogle Scholar
  69. Pannocchia G, Puccini M, Seggiani M, Vitolo S (2007) Experimental and modeling studies on high-temperature capture of CO2 using lithium zirconate based sorbents. Ind Eng Chem Res 46:6696–6706. doi:10.1021/ie0616949CrossRefGoogle Scholar
  70. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)–A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water Resources InvestigationsGoogle Scholar
  71. Pearce JM (1996) Natural occurrences as analogues for the geological disposal of carbon. Fuel Energy Abstr 37:305. doi:10.1016/0140-6701(96)82690-7Google Scholar
  72. Pennline HW, Luebke DR, Jones KL et al (2008) Progress in carbon dioxide capture and separation research for gasification-based power generation point sources. Fuel Process Technol 89:897–907. doi:10.1016/j.fuproc.2008.02.002CrossRefGoogle Scholar
  73. Perinu C, Arstad B, Jens K-J (2014) NMR spectroscopy applied to amine–CO2–H2O systems relevant for post-combustion CO2 capture: a review. Int J Greenh Gas Control 20:230–243. doi:10.1016/j.ijggc.2013.10.029CrossRefGoogle Scholar
  74. Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Memb Sci 279:1–49. doi:10.1016/j.memsci.2005.12.062CrossRefGoogle Scholar
  75. Pruess K, Garcia J (2002) Multiphase flow dynamics during CO2 disposal into saline aquifers. Environ Geol 42:282–295. doi:10.1007/s00254-001-0498-3CrossRefGoogle Scholar
  76. Puxty G, Rowland R, Allport A et al (2009) Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines. Environ Sci Technol 43:6427–6433. doi:10.1021/es901376aCrossRefGoogle Scholar
  77. Raeissi S, Peters CJ (2008) Carbon dioxide solubility in the homologous 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide family. J Chem Eng Data 54:382–386. doi:10.1021/je800433rCrossRefGoogle Scholar
  78. Ramdin M, de Loos TW, Vlugt TJH (2012) State-of-the-art of CO2 capture with ionic liquids. Ind Eng Chem Res 51:8149–8177. doi:10.1021/ie3003705CrossRefGoogle Scholar
  79. Reeves SR, Schoeling L (2001) Geological sequestration of CO2 in coal seams: reservoir mechanisms, field performance, and economics. In: Williams DJ, Durie RA, McMUllan P, et al (eds) Fifth international conference greenhouse gas control technologies. CSIRO Publishing, Cairns, pp 593–598Google Scholar
  80. Rubin ES (2008) CO2 capture and transport. Elements 4:311–317CrossRefGoogle Scholar
  81. Sabouni R, Kazemian H, Rohani S (2014) Carbon dioxide capturing technologies: a review focusing on metal organic framework materials (MOFs). Environ Sci Pollut Res 21:5427–5449. doi:10.1007/s11356-013-2406-2CrossRefGoogle Scholar
  82. Samanta A, Zhao A, Shimizu GKH et al (2011) Post-combustion CO2 capture using solid sorbents: a review. Ind Eng Chem Res 51:1438–1463. doi:10.1021/ie200686qCrossRefGoogle Scholar
  83. Scherer GW, Celia MA, Prévost J-H et al (2005) Leakage of CO2 through abandoned wells: role of corrosion of cement. In: Carbon dioxide capture for storage in deep geologic formations: results from the CO2 capture project, vol 2. Elsevier, Amsterdam, pp 827–848CrossRefGoogle Scholar
  84. Scovazzo P, Kieft J, Finan DA et al (2004) Gas separations using non-hexafluorophosphate [PF6]- anion supported ionic liquid membranes. J Memb Sci 238:57–63. doi:10.1016/j.memsci.2004.02.033CrossRefGoogle Scholar
  85. Shin E-K, Lee B-C (2008) High-pressure phase behavior of carbon dioxide with ionic liquids: 1-alkyl-3-methylimidazolium trifluoromethanesulfonate. J Chem Eng Data 53:2728–2734. doi:10.1021/je8000443CrossRefGoogle Scholar
  86. Steefel CI, DePaolo DJ, Lichtner PC (2005) Reactive transport modeling: an essential tool and a new research approach for the earth sciences. Earth Planet Sci Lett 240:539–558. doi:10.1016/j.epsl.2005.09.017CrossRefGoogle Scholar
  87. Stevens SH, Fox CE, Melzer LS (2000) McElmo Dome and ST. Johns natural CO2 deposits: analogs for carbon sequestration. GHGT-5Google Scholar
  88. Stevens SH, Kuuskraa VA, Gale J, Beecy D (2001) CO2 injection and sequestration in depleted oil and gas fields and deep coal seams: worldwide potential and costs. Environ Geosci 8:200–209CrossRefGoogle Scholar
  89. Supasitmongkol S, Styring P (2010) High CO2 solubility in ionic liquids and a tetraalkylammonium-based poly(ionic liquid). Energy Environ Sci 3:1961–1972. doi:10.1039/C0EE00293CCrossRefGoogle Scholar
  90. Taber JJ, Martin FD, Seright RS (1997a) EOR screening criteria revisited – part 1: introduction to screening criteria and enhanced recovery field projects. Soc Pet Eng Res Eng 12(3):9Google Scholar
  91. Taber JJ, Martin FD, Seright RS (1997b) EOR screening criteria revisited – part 2: applications and impact of oil prices. Soc Pet Eng Res Eng 12(3):6Google Scholar
  92. Tang J, Sun W, Tang H et al (2005a) Enhanced CO2 absorption of poly(ionic liquid)s. Macromolecules 38:2037–2039. doi:10.1021/ma047574zCrossRefGoogle Scholar
  93. Tang J, Tang H, Sun W et al (2005b) Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption. Chem Commun 5:3325–3327Google Scholar
  94. Torp TA, Gale J (2004) Demonstrating storage of CO2 in geological reservoirs: the sleipner and SACS projects. Energy 29:1361–1369. doi:10.1016/ Scholar
  95. Tsang C-F, Doughty C, Rutqvist J, Xu T (2007) Modeling to understand and simulate physico-chemical processes of CO2 geological storage. In: Wilson EJ, Gerard D (eds) Carbon capture and sequestration: integrating technology, monitoring, regulation. Blackwell, Ames, pp 35–72Google Scholar
  96. UNFCCC (2011) CDM: Carbon dioxide capture and storage in geological formations as CDM project activities. Accessed 22 Jan 2015
  97. Van Bergen F, Gale J, Damen KJ, Wildenborg AFB (2004) Worldwide selection of early opportunities for CO2-enhanced oil recovery and CO2-enhanced coal bed methane production. Energy 29:1611–1621. doi:10.1016/ Scholar
  98. Walton KS, Abney MB, Douglas LeVan M (2006) CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous Mesoporous Mater 91:78–84. doi:10.1016/j.micromeso.2005.11.023CrossRefGoogle Scholar
  99. Wang Q, Luo J, Zhong Z, Borgna A (2011a) CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci 4:42–55. doi:10.1039/C0EE00064GMATHCrossRefGoogle Scholar
  100. Wang C, Luo X, Luo H et al (2011b) Tuning the basicity of ionic liquids for equimolar CO2 capture. Angew Chemie Int Ed 50:4918–4922. doi:10.1002/anie.201008151CrossRefGoogle Scholar
  101. Wang J, Huang L, Yang R et al (2014) Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ Sci 7:3478–3518. doi:10.1039/C4EE01647ECrossRefGoogle Scholar
  102. Welton T (2004) Ionic liquids in catalysis. Coord Chem Rev 248:2459–2477. doi:10.1016/j.ccr.2004.04.015CrossRefGoogle Scholar
  103. Wilson EJ, Gerard D (2007) Risk assessment and management for geologic sequestration of carbon dioxide. In: Wilson EJ, Gerard D (eds) Carbon capture and sequestration: integrating technology, monitoring, regulation. Blackwell, Ames, pp 101–126Google Scholar
  104. Xiong Y-B, Wang H, Wang Y-J, Wang R-M (2012) Novel imidazolium-based poly(ionic liquid)s: preparation, characterization, and absorption of CO2. Polym Adv Technol 23:835–840. doi:10.1002/pat.1973CrossRefGoogle Scholar
  105. Xu X, Song C, Andrésen JM et al (2003) Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microporous Mesoporous Mater 62:29–45. doi:10.1016/s1387-1811(03)00388-3CrossRefGoogle Scholar
  106. Xu TF, Sonnenthal E, Spycher N, Pruess K (2006) TOUGHREACT – a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration. Comput Geosci 32:145–165. doi:10.1016/j.cageo.2005.06.014CrossRefGoogle Scholar
  107. Yang H, Xu Z, Fan M et al (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20:14–27. doi:10.1016/s1001-0742(08)60002-9CrossRefGoogle Scholar
  108. Yuan J, Antonietti M (2011) Poly(ionic liquid)s: polymers expanding classical property profiles. Polymer (Guildf) 52:1469–1482. doi:10.1016/j.polymer.2011.01.043CrossRefGoogle Scholar
  109. Yuan J, Mecerreyes D, Antonietti M (2013) Poly(ionic liquid)s: an update. Prog Polym Sci 38:1009–1036. doi:10.1016/j.progpolymsci.2013.04.002CrossRefGoogle Scholar
  110. Zhang J, Singh R, Webley PA (2008) Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture. Microporous Mesoporous Mater 111:478–487. doi:10.1016/j.micromeso.2007.08.022CrossRefGoogle Scholar
  111. Zhao L, Riensche E, Menzer R et al (2008) A parametric study of CO2/N2 gas separation membrane processes for post-combustion capture. J Memb Sci 325:284–294. doi:10.1016/j.memsci.2008.07.058CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • J. Marcelo Ketzer
    • 1
  • Rodrigo S. Iglesias
    • 2
  • Sandra Einloft
    • 3
  1. 1.IPR – Institute of Petroleum and Natural ResourcesPontifical Catholic University of Rio Grande do SulPorto AlegreBrazil
  2. 2.FENG – Engineering FacultyPontifical Catholic University of Rio Grande do SulPorto AlegreBrazil
  3. 3.FAQUI – Faculty of ChemistryPontifical Catholic University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations