Nuclear Energy and Environmental Impact

  • K. S. Raja
  • B. Pesic
  • M. Misra
Living reference work entry


Nuclear energy is attracting revived interest as a potential alternate for electric power generation in the event of increased concerns about global warming. Compared to energy produced by combustion of a carbon atom in coal, fission of a U-235 atom will produce about 10 millions times more energy. However, storage of the nuclear waste is an environmental issue. This chapter has four sections with a major focus on introduction of nuclear power plants and reprocessing of spent nuclear fuels. Different nuclear fuel cycles and nuclear power reactors are introduced in the first section, and the cost–benefits of different energy sources are compared. Fuel burnup and formation of fission products are discussed along with operational impacts and risk analyses in the second section. The third section discusses design of nuclear structural components and various degradation modes. Section four discusses reprocessing issues of nuclear spent fuels. Reprocessing of spent nuclear fuel may be an economically viable option and reduces high-radioactive load in the nuclear waste repositories as well. However, there is a concern about proliferation of weapons-grade plutonium separated during reprocessing. Containment of radionuclides in different waste forms is also discussed in this section.


Austenitic Stainless Steel Molten Salt Fission Product Fuel Cycle Spend Fuel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson MT, Crawford SL, Cumblidge SE, Denslow KM, Diaz AA, Doctor SR (2007) NUREG/CR-6933, PNNL-16292, March 2007Google Scholar
  2. Bloom EE (1998) J Nucl Mater 263:7CrossRefGoogle Scholar
  3. Bond AP, Dundar HJ (1977) In: Staehle RW, Hochmann J, MdRight RD, Slater RE (eds) Stress corrosion cracking of ferritic stainless steels. NACE, Houston, p 1136Google Scholar
  4. Brinkman CR, Korth GE (1973) Heat-to-heat variations in the fatigue and creep–fatigue behavior of AISI type 304 stainless steel at 593°C. J Nucl Mater 48(3):293–306CrossRefGoogle Scholar
  5. Calonne V, Gourgues AF, Pineau A (2004) Fatigue Fract Eng Mater Struct 27:31–43CrossRefGoogle Scholar
  6. CANDU Reactors, Information from:
  7. Capdevila C, Miller MK, Russell KF, Chao J, Gonzalez-Carrasco JL (2008) Phase separation in PM 2000 Fe-base ODS alloy. Mater Sci Eng A 490:277–288CrossRefGoogle Scholar
  8. Caravaca C, De Cordoba G, Tomas MJ, Rosado M (2007) Electrochemical behavior of Gd in molten LiCl-KCl. J Nucl Mater 360:25–31CrossRefGoogle Scholar
  9. Carmack WJ et al (2009) Metallic fuels for advanced reactors. J Nucl Mater 392(2):139–150CrossRefGoogle Scholar
  10. Carter ML (2004) Mater Res Bull 39:1075Google Scholar
  11. Castrillejo Y, Bermejo MR, Pardo R, Martinez AM (2002) Use of electrochemical techniques for study of solubilization of cerium compounds in molten chloride. J Electroanal Chem 322:124–140CrossRefGoogle Scholar
  12. Castrillejo Y et al (2005a) Electrochemistry of Dy in LiCl-KCl. Electrochim Acta 50:2047–2057CrossRefGoogle Scholar
  13. Castrillejo Y et al (2005b) Electrochemical behavior of Pr(III) in molten chlorides. J Electroanal Chem 575:61–74CrossRefGoogle Scholar
  14. Castrillejo J et al (2005c) Electrochim Acta 50:2047; (2006) 51:1941; (2008) 53:5106; (2005) J Electroanal Chem 575:61–74Google Scholar
  15. Celestian AJ et al (2008) J Am Chem Soc 130:11689CrossRefGoogle Scholar
  16. Charit I, Murty KL (2008) Creep behavior of niobium-modified zirconium alloys. J Nucl Mater 374(3):354–363CrossRefGoogle Scholar
  17. Chen GZ, Fray DJ, Farthing TW (2000) Nature 407(6802):361–364CrossRefGoogle Scholar
  18. Choo KN, Pyun SI, Kim YS (1995) J Nucl Mater 226:9–14CrossRefGoogle Scholar
  19. Chung HM, Leax TR (1990) Mater Sci Technol 6:249–262CrossRefGoogle Scholar
  20. Cicero G, Catellani A, Galli G (2004) Phys Rev Lett 93:016102CrossRefGoogle Scholar
  21. Cicero S, Setien J, Gorrochategui I (2009) Nucl Eng Des 239:16–22CrossRefGoogle Scholar
  22. Cohen U (1983) J Electrochem Soc 130:1480CrossRefGoogle Scholar
  23. Cookson JM, Was GS (1995) Proceedings of the seventh international conference on environmental degradation of materials in nuclear power systems water reactors, NACE, Breckenridge, p 1109Google Scholar
  24. Dahlkamp F (1993) Uranium ore deposits. Springer, Berlin. ISBN 3540532641CrossRefGoogle Scholar
  25. Domagala RF, McPherson DJ (1954) Trans AIME 200:238Google Scholar
  26. “Economics of Nuclear Power” reported in
  27. Fullwood RR, Hall RE (1988) Probabilistic risk assessment in the nuclear power industry: fundamentals and applications. Pergamon Press, OxfordGoogle Scholar
  28. Galkin NP, Veryatin UD, Yakhonin IF, Lugonov AF, Dymkov YM (1982) The conversion of uranium hexafluoride to dioxide. At Energ 52(1):36–39CrossRefGoogle Scholar
  29. Gaune-Escard M, Bogacz A, Rycerz L, Szczepaniak W (1994) Thermochim Acta 236:67–80CrossRefGoogle Scholar
  30. Gogotsi YG et al (1996) J Mater Chem 6:595–604CrossRefGoogle Scholar
  31. Gong W, Gaune-Escard M, Rycerz L (2005) J Alloys Compd 396:92–99CrossRefGoogle Scholar
  32. Grobe M, Lehmann E, Steinbruck M, Kuhne G, Stuckert J (2009) J Nucl Mater 385:339–345CrossRefGoogle Scholar
  33. Grossbeck ML, Ehrlich K, Wassilew C (1990) An assessment of tensile, irradiation creep, creep rupture, and fatigue behavior in austenitic stainless steels with emphasis on spectral effects. J Nucl Mater 174(2–3):264–281CrossRefGoogle Scholar
  34. Guo H, Wang D, Gong S, Xu H (2014) Effect of reactive elements on oxidation behavior of β-NiAl at 1200 °C. Corros Sci 78:369–377CrossRefGoogle Scholar
  35. Hallstadius L, Johnson S, Lahoda E (2012) Prog Nucl Energy 57:71–76CrossRefGoogle Scholar
  36. Hamel C, Chamelot P, Taxil P (2004) Nd cathode process in molten fluoride. Electrochim Acta 49:4467–4476CrossRefGoogle Scholar
  37. Hazebroucq S, Picard GS, Adamo C (2005) A theoretical investigation of Gd(III) salvation in molten salts. J Chem Phys 122:224512CrossRefGoogle Scholar
  38. He C, Wu X, Shen J, Chu PK (2012) Nano Lett 12:1545–1548CrossRefGoogle Scholar
  39. Hejzlar P, Mattingly BT, Todreas NE, Driscoll MJ (1997) Nucl Eng Des 167:375–392CrossRefGoogle Scholar
  40. Henager CH et al (2008) J Nucl Mater 378:9–16CrossRefGoogle Scholar
  41. Heuer AH, Hovis DB, Smialek JL, Gleeson B (2011) Alumina scale formation: a new perspective. J Am Ceram Soc 94:S146–S153CrossRefGoogle Scholar
  42. Hirayama H, Kawakubo T, Goto A (1989) J Am Ceram Soc 72:2049–2053CrossRefGoogle Scholar
  43. Holt RA (1974) J Nucl Mater 51: 309; (1974) 50: 207Google Scholar
  44. IAEA (2001) Safety assessment and verification for nuclear power plants – a safety guide. Safety standards series, No. NS-G-1.2. ISBN 92-0-101601-8Google Scholar
  45. Ikeda M, Miyagi Y, Igarashi K, Mochinaga J, Ohno H (1988) The 20th symposium on molten salt chemistry, C303, Yokohama, 10 Nov 1988Google Scholar
  46. Jayet-Gendrot S, Ould P, Meylogan T (1998) Nucl Eng Des 184:3–11CrossRefGoogle Scholar
  47. Jeong I-S, Ha G-H, Jun H-I (2009) J Loss Prev Process Ind 22:879–883CrossRefGoogle Scholar
  48. Jeong IS, Kim W, Kim TR, Jeon HI (2011) Nucl Eng Tech 43:83–88CrossRefGoogle Scholar
  49. Jevremovic T (2005) Nuclear principles in engineering. Springer, New YorkGoogle Scholar
  50. Jiang C et al (2009) Phys Rev B 79:132110CrossRefGoogle Scholar
  51. Kawaguchi S, Sakamoto N, Takano G, Matsuda F, Kikuchi Y, Mraz L (1997) Nucl Eng Des 174:273–285CrossRefGoogle Scholar
  52. Kerr R, Solana F, Bernstein IM, Thompson AW (1987) Metall Trans A 18A:1011CrossRefGoogle Scholar
  53. Kim WJ, Hwang HS, Park JY, Ryu WS (2003) J Mater Lett 22:581–584CrossRefGoogle Scholar
  54. Kimura A et al (1996) Irradiation hardening of reduced activation martensitic steels. J Nucl Mater 233–237(Pt A):319–325CrossRefGoogle Scholar
  55. Kiran Kumar M, Aggarwal S, Kain V, Saario T, Bojinov M (2010) Nucl Eng Des 240:985–994CrossRefGoogle Scholar
  56. Klueh RL, Alexander DJ (1996) Impact behavior of reduced-activation steels irradiated to 24 dpa. J Nucl Mater 233–237(Pt A):336–341CrossRefGoogle Scholar
  57. Klueh RL, Shingledecker JP, Swinderman RW, Hoelzer DT (2005) Oxide dispersion-strengthened steels: a comparison of some commercial and experimental alloys. J Nucl Mater 341:103–114CrossRefGoogle Scholar
  58. Knief RA (1992) Nuclear engineering: theory and technology of commercial nuclear power. Hemisphere Publishing Corporation, Washington DCGoogle Scholar
  59. Koyama T, Iizuka M, Shoji Y, Fujita R, Tanaka H, Kobayashi T, Tokiwai M (1997) An experimental study of molten salt reprocessing. J Nucl Sci Tech 34(4):384–393CrossRefGoogle Scholar
  60. Koyama T, Hijikata T, Usami T, Inoue T, Kitawaki S, Shinozaki T, Myochin M (2007) Integrated experiments on electrometallurgical processing using PuO2. J Nucl Sci Tech 44(3):382–392CrossRefGoogle Scholar
  61. Kraft T, Nickel KG, Gogotsi YG (1998) J Mater Sci 33:4357–4364CrossRefGoogle Scholar
  62. Krass AS, Boskma P, Elzen B, Smit WA (1983) Uranium enrichment and nuclear weapon proliferation. Taylor and Francis, LondonGoogle Scholar
  63. Kuan P, Hanson DJ (1991) INL report EGG-M-91375Google Scholar
  64. Kuznetsov SA, Hayashi H, Minato K, Gauno-Escard M (2005) Determination of U and RE metals separation coefficients in LiCl-KCl melt. J Nucl Mater 344:169–172CrossRefGoogle Scholar
  65. Kwon J, Woo S, Lee Y, Park J, Park Y (2001) Nucl Eng Des 206:35–44CrossRefGoogle Scholar
  66. Leslie WC (1977) Stress corrosion cracking and hydrogen embrittlement of iron base alloys. NACE, Houston, p 52Google Scholar
  67. Li J, Yang Y, Li L, Lou J, Luo X, Huang B (2013) J Appl Phys 113:023516CrossRefGoogle Scholar
  68. Lide DR (1997) Handbook of chemistry and physics, 78th edn. CRC Press, Boca RatonGoogle Scholar
  69. Lim J, Hwang IS, Kim JH (2013) Design of alumina forming FeCrAl steels for lead cooled fast reactors. J Nucl Mater 441:650–660CrossRefGoogle Scholar
  70. Lippmann W, Knorr J, Nöring R, Umbreit M (2001) Nucl Eng Des 205:13–22CrossRefGoogle Scholar
  71. Liu Y, Su KH, Wang X, Wang Y, Zeng QF, Cheng LF, Zhang LT (2010) Chem Phys Lett 501:87–92CrossRefGoogle Scholar
  72. Liu Y, Su KH, Zeng QF, Cheng LF, Zhang LT (2012) Theor Chem Acc 131:1101CrossRefGoogle Scholar
  73. Makhijani A, Chalmers L, Smith B. Uranium Enrichment, Institute for Energy and Environmental Research, 15 Oct 2004.
  74. Maziasz PJ (1993) Overview of microstructural evolution in neutron-irradiated austenitic stainless steels. J Nucl Mater 205:118–145CrossRefGoogle Scholar
  75. Maziasz PJ, McHargue CJ (1987) Int Metal Rev 32:190CrossRefGoogle Scholar
  76. MIN KS, Nam SW (2003) Correlation between characteristics of grain boundary carbides and creep-fatigue properties in AISI 321 stainless steel. J Nucl Mater 322:91–97CrossRefGoogle Scholar
  77. Morss LR, Edelstein NM, Fuger J (eds) (2006) The chemistry of the actinide and transactinide elements, 3rd edn. Springer, DordrechtGoogle Scholar
  78. Murray RL (2001) Nuclear energy: an introduction to the concepts, systems, and applications of nuclear processes. Butterworth Heinemann, WoburnGoogle Scholar
  79. Nam SW (2002) Assessment of damage and life prediction of austenitic stainless steel under high temperature creep-fatigue interaction condition. Mater Sci Eng A322(1–2):64–72CrossRefGoogle Scholar
  80. Nelson AT, Sooby ES, Kim YJ, Cheng B, Maloy SA (2013) High temperature oxidation of molybdenum in water vapor environments. J Nucl Mater 448(1–3):441–447Google Scholar
  81. Ni N, Lozano-Perez S, Sykes J, Grovenor C (2011) Ultramicroscopy 111:123–130CrossRefGoogle Scholar
  82. Nilsson JO (1988), ASTM STP 942, 543, American Society for Testing Materials, PhiladelphiaGoogle Scholar
  83. OCDE/NEA report: accelerator-driven systems (ADS) and fast reactors (FR) in advanced nuclear fuel cycles. A comparative study, (2002) 1Google Scholar
  84. Okamoto Y (1998) Phys Rev B 58:6760CrossRefGoogle Scholar
  85. Olander DR (1978) The Gas Centrifuge. Scientific American, August 1978, p 37Google Scholar
  86. Opila EJ (2003) J Am Ceram Soc 86:1238–1248CrossRefGoogle Scholar
  87. Opila EJ, Hann RE Jr (1997) J Am Ceram Soc 80:197–205CrossRefGoogle Scholar
  88. Pint BA, Terrani KA, Brady MP, Cheng T, Keiser JR (2013) High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments. J Nucl Mater 440:420–427CrossRefGoogle Scholar
  89. RHO BS, Nam SW (2002) Heat effects of nitrogen on low-cycle fatigue properties of Type 304L austenitic stainless steels tested with and without tensile strain hold. J Nucl Mater 300:65–72CrossRefGoogle Scholar
  90. Roy JJ et al (1996) J Electrochem Soc 143:2487CrossRefGoogle Scholar
  91. Rudling P, Adamson R, Cox B, Garzarolli F, Strasser A (2008) High burn-up fuel issues. Nucl Eng Technol 40(1):1–8CrossRefGoogle Scholar
  92. Sakamura Y et al (1998) J Alloys Compd 271–273:592–596CrossRefGoogle Scholar
  93. Senor DJ, Youngblood GE, Moore CE, Trimble DJ, Newsome GA, Woods JJ (1996) Fusion Technol 30:943Google Scholar
  94. Serrano K, Taxil P (1999) J Appl Electrochem 29:505CrossRefGoogle Scholar
  95. Shack WJ, Kassner TF (1994) Review of Environmental Effects on Fatigue Crack Growth of Austenitic Stainless Steels, NUREG/CR-6176, ANL-94/1, U.S. Nuclear Regulatory Commission, Washington, DC, NRC FIN L2424Google Scholar
  96. Shapiro J (1990) Radiation protection, 3rd edn. Harvard University Press, Cambridge, MAGoogle Scholar
  97. Shen X, Pantelides ST (2013) J Phys Chem Lett 4:100–104CrossRefGoogle Scholar
  98. Shiba K et al (1996) Irradiation response on mechanical properties of neutron irradiated F82H. J Nucl Mater 233–237(Pt A):309–312CrossRefGoogle Scholar
  99. Shimada S, Onuma T, Kiyono H (2006) J Am Ceram Soc 89:1218–1225CrossRefGoogle Scholar
  100. Shirai O, Iizuka M, Iwai T, Suzuki Y, Arai Y (2000) J Electroanal Chem 490:31–36CrossRefGoogle Scholar
  101. Shoesmith DW (2006) Corrosion 62:703–722CrossRefGoogle Scholar
  102. Storm van Leeuwen JW, Smith P (2005) Nuclear power: the energy balance.
  103. Suauzay M et al (2004) Creep-fatigue behaviour of an AISI stainless steel at 550°C. Nucl Eng Des 232:219–236CrossRefGoogle Scholar
  104. Suzuki S, Saito K, Kodama M, Shima S, Saito T (1991) SmiRt 11 transactions, vol. D, August 1991, TokyoGoogle Scholar
  105. Takagi R, Rycerz L, Gaune-Escard M (1997) J Alloys Compd 257:134–136CrossRefGoogle Scholar
  106. Tan L, Allen TR, Barringer E (2009) J Nucl Mater 394:95–101CrossRefGoogle Scholar
  107. Terrani KA, Zinkle SL, Snead LL (2013) Advanced oxidation-resistant iron-based alloys for LWR fuel cladding. J Nuc Mater 448:374–379Google Scholar
  108. Thorium fuel cycle–potential benefits and challenges, International Atomic Energy Agency, Vienna, IAEA-TECDOC-1450, May 2005Google Scholar
  109. Tsuji H, Nakajima H (1994) Creep-fatigue Damage Evaluation of a Nickel-base Heat-resistant Alloy Hastelloy XR in Simulated HTGR Helium Gas Environment. J Nucl Mater 208:293–299CrossRefGoogle Scholar
  110. Van Der Schaaf B (1988) The effect of neutron irradiation on the fatigue and fatigue-creep behaviour of structural materials. J Nucl Mater 155–157:156–163CrossRefGoogle Scholar
  111. Wang ZX, Xue F, Guo WH, Shi HJ, Zhang GD, Shu G (2010) Nucl Eng Des 240:2538–2543CrossRefGoogle Scholar
  112. Wigeland RA et al (2006) Nucl Technol 154:95Google Scholar
  113. Wray P, Marra J (2011) Materials for nuclear energy in the post-Fukushima era. Am Ceram Soc Bull 90(6):24–28Google Scholar
  114. Yang YS, Kang YH, Lee HK (1997) Estimation of optimum experimental parameters in chlorination of UO2 with Cl2 gas and carbon for UCl4. Mater Chem Phys 50:243–247CrossRefGoogle Scholar
  115. Yilmazbahyan A, Breval E, Motta AT, Comstock RJ (2006) J Nucl Mater 349:265–281CrossRefGoogle Scholar
  116. Yokobori T, Yokobori AT Jr (2001) High temperature creep, fatigue and creep-fatigue Interaction in engineering materials. Int J Press Vessel Pip 78:903–908CrossRefMATHGoogle Scholar
  117. Zhang H et al (2010) J Am Ceram Soc 93:1148–1155CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Chemical and Materials EngineeringUniversity of IdahoMoscowUSA
  2. 2.Department of Metallurgical EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations