Skip to main content

Nuclear Energy and Environmental Impact

  • Living reference work entry
  • First Online:
Handbook of Climate Change Mitigation and Adaptation
  • 358 Accesses

Abstract

Nuclear energy is attracting revived interest as a potential alternate for electric power generation in the event of increased concerns about global warming. Compared to energy produced by combustion of a carbon atom in coal, fission of a U-235 atom will produce about 10 millions times more energy. However, storage of the nuclear waste is an environmental issue. This chapter has four sections with a major focus on introduction of nuclear power plants and reprocessing of spent nuclear fuels. Different nuclear fuel cycles and nuclear power reactors are introduced in the first section, and the cost–benefits of different energy sources are compared. Fuel burnup and formation of fission products are discussed along with operational impacts and risk analyses in the second section. The third section discusses design of nuclear structural components and various degradation modes. Section four discusses reprocessing issues of nuclear spent fuels. Reprocessing of spent nuclear fuel may be an economically viable option and reduces high-radioactive load in the nuclear waste repositories as well. However, there is a concern about proliferation of weapons-grade plutonium separated during reprocessing. Containment of radionuclides in different waste forms is also discussed in this section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anderson MT, Crawford SL, Cumblidge SE, Denslow KM, Diaz AA, Doctor SR (2007) NUREG/CR-6933, PNNL-16292, March 2007

    Google Scholar 

  • Bloom EE (1998) J Nucl Mater 263:7

    Article  Google Scholar 

  • Bond AP, Dundar HJ (1977) In: Staehle RW, Hochmann J, MdRight RD, Slater RE (eds) Stress corrosion cracking of ferritic stainless steels. NACE, Houston, p 1136

    Google Scholar 

  • Brinkman CR, Korth GE (1973) Heat-to-heat variations in the fatigue and creep–fatigue behavior of AISI type 304 stainless steel at 593°C. J Nucl Mater 48(3):293–306

    Article  Google Scholar 

  • Calonne V, Gourgues AF, Pineau A (2004) Fatigue Fract Eng Mater Struct 27:31–43

    Article  Google Scholar 

  • CANDU Reactors, Information from: http://www.aecl.ca/Reactors.htm

  • Capdevila C, Miller MK, Russell KF, Chao J, Gonzalez-Carrasco JL (2008) Phase separation in PM 2000 Fe-base ODS alloy. Mater Sci Eng A 490:277–288

    Article  Google Scholar 

  • Caravaca C, De Cordoba G, Tomas MJ, Rosado M (2007) Electrochemical behavior of Gd in molten LiCl-KCl. J Nucl Mater 360:25–31

    Article  Google Scholar 

  • Carmack WJ et al (2009) Metallic fuels for advanced reactors. J Nucl Mater 392(2):139–150

    Article  Google Scholar 

  • Carter ML (2004) Mater Res Bull 39:1075

    Google Scholar 

  • Castrillejo Y, Bermejo MR, Pardo R, Martinez AM (2002) Use of electrochemical techniques for study of solubilization of cerium compounds in molten chloride. J Electroanal Chem 322:124–140

    Article  Google Scholar 

  • Castrillejo Y et al (2005a) Electrochemistry of Dy in LiCl-KCl. Electrochim Acta 50:2047–2057

    Article  Google Scholar 

  • Castrillejo Y et al (2005b) Electrochemical behavior of Pr(III) in molten chlorides. J Electroanal Chem 575:61–74

    Article  Google Scholar 

  • Castrillejo J et al (2005c) Electrochim Acta 50:2047; (2006) 51:1941; (2008) 53:5106; (2005) J Electroanal Chem 575:61–74

    Google Scholar 

  • Celestian AJ et al (2008) J Am Chem Soc 130:11689

    Article  Google Scholar 

  • Charit I, Murty KL (2008) Creep behavior of niobium-modified zirconium alloys. J Nucl Mater 374(3):354–363

    Article  Google Scholar 

  • Chen GZ, Fray DJ, Farthing TW (2000) Nature 407(6802):361–364

    Article  Google Scholar 

  • Choo KN, Pyun SI, Kim YS (1995) J Nucl Mater 226:9–14

    Article  Google Scholar 

  • Chung HM, Leax TR (1990) Mater Sci Technol 6:249–262

    Article  Google Scholar 

  • Cicero G, Catellani A, Galli G (2004) Phys Rev Lett 93:016102

    Article  Google Scholar 

  • Cicero S, Setien J, Gorrochategui I (2009) Nucl Eng Des 239:16–22

    Article  Google Scholar 

  • Cohen U (1983) J Electrochem Soc 130:1480

    Article  Google Scholar 

  • Cookson JM, Was GS (1995) Proceedings of the seventh international conference on environmental degradation of materials in nuclear power systems water reactors, NACE, Breckenridge, p 1109

    Google Scholar 

  • Dahlkamp F (1993) Uranium ore deposits. Springer, Berlin. ISBN 3540532641

    Book  Google Scholar 

  • Domagala RF, McPherson DJ (1954) Trans AIME 200:238

    Google Scholar 

  • “Economics of Nuclear Power” reported in http://www.world-nuclear.org/info/inf02.html

  • Fullwood RR, Hall RE (1988) Probabilistic risk assessment in the nuclear power industry: fundamentals and applications. Pergamon Press, Oxford

    Google Scholar 

  • Galkin NP, Veryatin UD, Yakhonin IF, Lugonov AF, Dymkov YM (1982) The conversion of uranium hexafluoride to dioxide. At Energ 52(1):36–39

    Article  Google Scholar 

  • Gaune-Escard M, Bogacz A, Rycerz L, Szczepaniak W (1994) Thermochim Acta 236:67–80

    Article  Google Scholar 

  • Gogotsi YG et al (1996) J Mater Chem 6:595–604

    Article  Google Scholar 

  • Gong W, Gaune-Escard M, Rycerz L (2005) J Alloys Compd 396:92–99

    Article  Google Scholar 

  • Grobe M, Lehmann E, Steinbruck M, Kuhne G, Stuckert J (2009) J Nucl Mater 385:339–345

    Article  Google Scholar 

  • Grossbeck ML, Ehrlich K, Wassilew C (1990) An assessment of tensile, irradiation creep, creep rupture, and fatigue behavior in austenitic stainless steels with emphasis on spectral effects. J Nucl Mater 174(2–3):264–281

    Article  Google Scholar 

  • Guo H, Wang D, Gong S, Xu H (2014) Effect of reactive elements on oxidation behavior of β-NiAl at 1200 °C. Corros Sci 78:369–377

    Article  Google Scholar 

  • Hallstadius L, Johnson S, Lahoda E (2012) Prog Nucl Energy 57:71–76

    Article  Google Scholar 

  • Hamel C, Chamelot P, Taxil P (2004) Nd cathode process in molten fluoride. Electrochim Acta 49:4467–4476

    Article  Google Scholar 

  • Hazebroucq S, Picard GS, Adamo C (2005) A theoretical investigation of Gd(III) salvation in molten salts. J Chem Phys 122:224512

    Article  Google Scholar 

  • He C, Wu X, Shen J, Chu PK (2012) Nano Lett 12:1545–1548

    Article  Google Scholar 

  • Hejzlar P, Mattingly BT, Todreas NE, Driscoll MJ (1997) Nucl Eng Des 167:375–392

    Article  Google Scholar 

  • Henager CH et al (2008) J Nucl Mater 378:9–16

    Article  Google Scholar 

  • Heuer AH, Hovis DB, Smialek JL, Gleeson B (2011) Alumina scale formation: a new perspective. J Am Ceram Soc 94:S146–S153

    Article  Google Scholar 

  • Hirayama H, Kawakubo T, Goto A (1989) J Am Ceram Soc 72:2049–2053

    Article  Google Scholar 

  • Holt RA (1974) J Nucl Mater 51: 309; (1974) 50: 207

    Google Scholar 

  • IAEA (2001) Safety assessment and verification for nuclear power plants – a safety guide. Safety standards series, No. NS-G-1.2. ISBN 92-0-101601-8

    Google Scholar 

  • Ikeda M, Miyagi Y, Igarashi K, Mochinaga J, Ohno H (1988) The 20th symposium on molten salt chemistry, C303, Yokohama, 10 Nov 1988

    Google Scholar 

  • Jayet-Gendrot S, Ould P, Meylogan T (1998) Nucl Eng Des 184:3–11

    Article  Google Scholar 

  • Jeong I-S, Ha G-H, Jun H-I (2009) J Loss Prev Process Ind 22:879–883

    Article  Google Scholar 

  • Jeong IS, Kim W, Kim TR, Jeon HI (2011) Nucl Eng Tech 43:83–88

    Article  Google Scholar 

  • Jevremovic T (2005) Nuclear principles in engineering. Springer, New York

    Google Scholar 

  • Jiang C et al (2009) Phys Rev B 79:132110

    Article  Google Scholar 

  • Kawaguchi S, Sakamoto N, Takano G, Matsuda F, Kikuchi Y, Mraz L (1997) Nucl Eng Des 174:273–285

    Article  Google Scholar 

  • Kerr R, Solana F, Bernstein IM, Thompson AW (1987) Metall Trans A 18A:1011

    Article  Google Scholar 

  • Kim WJ, Hwang HS, Park JY, Ryu WS (2003) J Mater Lett 22:581–584

    Article  Google Scholar 

  • Kimura A et al (1996) Irradiation hardening of reduced activation martensitic steels. J Nucl Mater 233–237(Pt A):319–325

    Article  Google Scholar 

  • Kiran Kumar M, Aggarwal S, Kain V, Saario T, Bojinov M (2010) Nucl Eng Des 240:985–994

    Article  Google Scholar 

  • Klueh RL, Alexander DJ (1996) Impact behavior of reduced-activation steels irradiated to 24 dpa. J Nucl Mater 233–237(Pt A):336–341

    Article  Google Scholar 

  • Klueh RL, Shingledecker JP, Swinderman RW, Hoelzer DT (2005) Oxide dispersion-strengthened steels: a comparison of some commercial and experimental alloys. J Nucl Mater 341:103–114

    Article  Google Scholar 

  • Knief RA (1992) Nuclear engineering: theory and technology of commercial nuclear power. Hemisphere Publishing Corporation, Washington DC

    Google Scholar 

  • Koyama T, Iizuka M, Shoji Y, Fujita R, Tanaka H, Kobayashi T, Tokiwai M (1997) An experimental study of molten salt reprocessing. J Nucl Sci Tech 34(4):384–393

    Article  Google Scholar 

  • Koyama T, Hijikata T, Usami T, Inoue T, Kitawaki S, Shinozaki T, Myochin M (2007) Integrated experiments on electrometallurgical processing using PuO2. J Nucl Sci Tech 44(3):382–392

    Article  Google Scholar 

  • Kraft T, Nickel KG, Gogotsi YG (1998) J Mater Sci 33:4357–4364

    Article  Google Scholar 

  • Krass AS, Boskma P, Elzen B, Smit WA (1983) Uranium enrichment and nuclear weapon proliferation. Taylor and Francis, London

    Google Scholar 

  • Kuan P, Hanson DJ (1991) INL report EGG-M-91375

    Google Scholar 

  • Kuznetsov SA, Hayashi H, Minato K, Gauno-Escard M (2005) Determination of U and RE metals separation coefficients in LiCl-KCl melt. J Nucl Mater 344:169–172

    Article  Google Scholar 

  • Kwon J, Woo S, Lee Y, Park J, Park Y (2001) Nucl Eng Des 206:35–44

    Article  Google Scholar 

  • Leslie WC (1977) Stress corrosion cracking and hydrogen embrittlement of iron base alloys. NACE, Houston, p 52

    Google Scholar 

  • Li J, Yang Y, Li L, Lou J, Luo X, Huang B (2013) J Appl Phys 113:023516

    Article  Google Scholar 

  • Lide DR (1997) Handbook of chemistry and physics, 78th edn. CRC Press, Boca Raton

    Google Scholar 

  • Lim J, Hwang IS, Kim JH (2013) Design of alumina forming FeCrAl steels for lead cooled fast reactors. J Nucl Mater 441:650–660

    Article  Google Scholar 

  • Lippmann W, Knorr J, Nöring R, Umbreit M (2001) Nucl Eng Des 205:13–22

    Article  Google Scholar 

  • Liu Y, Su KH, Wang X, Wang Y, Zeng QF, Cheng LF, Zhang LT (2010) Chem Phys Lett 501:87–92

    Article  Google Scholar 

  • Liu Y, Su KH, Zeng QF, Cheng LF, Zhang LT (2012) Theor Chem Acc 131:1101

    Article  Google Scholar 

  • Makhijani A, Chalmers L, Smith B. Uranium Enrichment, Institute for Energy and Environmental Research, 15 Oct 2004. http://www.ieer.org/reports/uranium/enrichment.pdf

  • Maziasz PJ (1993) Overview of microstructural evolution in neutron-irradiated austenitic stainless steels. J Nucl Mater 205:118–145

    Article  Google Scholar 

  • Maziasz PJ, McHargue CJ (1987) Int Metal Rev 32:190

    Article  Google Scholar 

  • MIN KS, Nam SW (2003) Correlation between characteristics of grain boundary carbides and creep-fatigue properties in AISI 321 stainless steel. J Nucl Mater 322:91–97

    Article  Google Scholar 

  • Morss LR, Edelstein NM, Fuger J (eds) (2006) The chemistry of the actinide and transactinide elements, 3rd edn. Springer, Dordrecht

    Google Scholar 

  • Murray RL (2001) Nuclear energy: an introduction to the concepts, systems, and applications of nuclear processes. Butterworth Heinemann, Woburn

    Google Scholar 

  • Nam SW (2002) Assessment of damage and life prediction of austenitic stainless steel under high temperature creep-fatigue interaction condition. Mater Sci Eng A322(1–2):64–72

    Article  Google Scholar 

  • Nelson AT, Sooby ES, Kim YJ, Cheng B, Maloy SA (2013) High temperature oxidation of molybdenum in water vapor environments. J Nucl Mater 448(1–3):441–447

    Google Scholar 

  • Ni N, Lozano-Perez S, Sykes J, Grovenor C (2011) Ultramicroscopy 111:123–130

    Article  Google Scholar 

  • Nilsson JO (1988), ASTM STP 942, 543, American Society for Testing Materials, Philadelphia

    Google Scholar 

  • OCDE/NEA report: accelerator-driven systems (ADS) and fast reactors (FR) in advanced nuclear fuel cycles. A comparative study, (2002) 1

    Google Scholar 

  • Okamoto Y (1998) Phys Rev B 58:6760

    Article  Google Scholar 

  • Olander DR (1978) The Gas Centrifuge. Scientific American, August 1978, p 37

    Google Scholar 

  • Opila EJ (2003) J Am Ceram Soc 86:1238–1248

    Article  Google Scholar 

  • Opila EJ, Hann RE Jr (1997) J Am Ceram Soc 80:197–205

    Article  Google Scholar 

  • Pint BA, Terrani KA, Brady MP, Cheng T, Keiser JR (2013) High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments. J Nucl Mater 440:420–427

    Article  Google Scholar 

  • RHO BS, Nam SW (2002) Heat effects of nitrogen on low-cycle fatigue properties of Type 304L austenitic stainless steels tested with and without tensile strain hold. J Nucl Mater 300:65–72

    Article  Google Scholar 

  • Roy JJ et al (1996) J Electrochem Soc 143:2487

    Article  Google Scholar 

  • Rudling P, Adamson R, Cox B, Garzarolli F, Strasser A (2008) High burn-up fuel issues. Nucl Eng Technol 40(1):1–8

    Article  Google Scholar 

  • Sakamura Y et al (1998) J Alloys Compd 271–273:592–596

    Article  Google Scholar 

  • Senor DJ, Youngblood GE, Moore CE, Trimble DJ, Newsome GA, Woods JJ (1996) Fusion Technol 30:943

    Google Scholar 

  • Serrano K, Taxil P (1999) J Appl Electrochem 29:505

    Article  Google Scholar 

  • Shack WJ, Kassner TF (1994) Review of Environmental Effects on Fatigue Crack Growth of Austenitic Stainless Steels, NUREG/CR-6176, ANL-94/1, U.S. Nuclear Regulatory Commission, Washington, DC, NRC FIN L2424

    Google Scholar 

  • Shapiro J (1990) Radiation protection, 3rd edn. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Shen X, Pantelides ST (2013) J Phys Chem Lett 4:100–104

    Article  Google Scholar 

  • Shiba K et al (1996) Irradiation response on mechanical properties of neutron irradiated F82H. J Nucl Mater 233–237(Pt A):309–312

    Article  Google Scholar 

  • Shimada S, Onuma T, Kiyono H (2006) J Am Ceram Soc 89:1218–1225

    Article  Google Scholar 

  • Shirai O, Iizuka M, Iwai T, Suzuki Y, Arai Y (2000) J Electroanal Chem 490:31–36

    Article  Google Scholar 

  • Shoesmith DW (2006) Corrosion 62:703–722

    Article  Google Scholar 

  • Storm van Leeuwen JW, Smith P (2005) Nuclear power: the energy balance. http://www.stormsmith.nl/

  • Suauzay M et al (2004) Creep-fatigue behaviour of an AISI stainless steel at 550°C. Nucl Eng Des 232:219–236

    Article  Google Scholar 

  • Suzuki S, Saito K, Kodama M, Shima S, Saito T (1991) SmiRt 11 transactions, vol. D, August 1991, Tokyo

    Google Scholar 

  • Takagi R, Rycerz L, Gaune-Escard M (1997) J Alloys Compd 257:134–136

    Article  Google Scholar 

  • Tan L, Allen TR, Barringer E (2009) J Nucl Mater 394:95–101

    Article  Google Scholar 

  • Terrani KA, Zinkle SL, Snead LL (2013) Advanced oxidation-resistant iron-based alloys for LWR fuel cladding. J Nuc Mater 448:374–379

    Google Scholar 

  • Thorium fuel cycle–potential benefits and challenges, International Atomic Energy Agency, Vienna, IAEA-TECDOC-1450, May 2005

    Google Scholar 

  • Tsuji H, Nakajima H (1994) Creep-fatigue Damage Evaluation of a Nickel-base Heat-resistant Alloy Hastelloy XR in Simulated HTGR Helium Gas Environment. J Nucl Mater 208:293–299

    Article  Google Scholar 

  • Van Der Schaaf B (1988) The effect of neutron irradiation on the fatigue and fatigue-creep behaviour of structural materials. J Nucl Mater 155–157:156–163

    Article  Google Scholar 

  • Wang ZX, Xue F, Guo WH, Shi HJ, Zhang GD, Shu G (2010) Nucl Eng Des 240:2538–2543

    Article  Google Scholar 

  • Wigeland RA et al (2006) Nucl Technol 154:95

    Google Scholar 

  • Wray P, Marra J (2011) Materials for nuclear energy in the post-Fukushima era. Am Ceram Soc Bull 90(6):24–28

    Google Scholar 

  • Yang YS, Kang YH, Lee HK (1997) Estimation of optimum experimental parameters in chlorination of UO2 with Cl2 gas and carbon for UCl4. Mater Chem Phys 50:243–247

    Article  Google Scholar 

  • Yilmazbahyan A, Breval E, Motta AT, Comstock RJ (2006) J Nucl Mater 349:265–281

    Article  Google Scholar 

  • Yokobori T, Yokobori AT Jr (2001) High temperature creep, fatigue and creep-fatigue Interaction in engineering materials. Int J Press Vessel Pip 78:903–908

    Article  MATH  Google Scholar 

  • Zhang H et al (2010) J Am Ceram Soc 93:1148–1155

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Raja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Raja, K.S., Pesic, B., Misra, M. (2015). Nuclear Energy and Environmental Impact. In: Chen, WY., Suzuki, T., Lackner, M. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6431-0_30-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6431-0_30-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6431-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics