Skip to main content

Modern Power Plant Control for Energy Conservation, Efficiency Increase, and Financial Benefit

  • Living reference work entry
  • First Online:
Handbook of Climate Change Mitigation and Adaptation

Abstract

Process control takes place in all power plants. The main task of all automatic controllers is to assure the optimal values of their controlled variables under all circumstances. The quality of operation of these controllers has evidently a crucial effect on the way of operation of the entire power plant. Whether a power plant – based on either renewable resources or fossil fuels – is operated in a highly effective way, or is a rather resource-consuming one, is evidently of very high importance regarding emissions and other ecological aspects. This fact is the reason for discussing in this chapter the possible ways for increasing the level of control quality in power plants.

An overview will be given at the beginning about the ways and tools the advanced control methods offer – in case of their more intensive applications in power plants – for protecting the environment and for mitigating the climate change. It will be followed by a concise but goal-oriented introduction of the most relevant control methods together with their evaluations regarding the aspects of their applicabilities in power plants. Because the way toward obtaining the environmental benefits offered by the advanced control methods is not a trivial one, some considerations, aspects, and hints will be given on this issue in the next part. A few successful power plant applications will be introduced afterward, and the actual main development directions will be outlined at the very end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

A(q) :

Polynomial in the ARX model

a 1a 5 :

Free parameters of the cost function

B 1 (q) :

Polynomial in the two-input ARX model

B 2 (q) :

Polynomial in the two-input ARX model

b 1b 5 :

Free parameters of the cost function

C CO mol/m3 :

Molar concentration of CO in the flue gas

C NO mol/m3 :

Molar concentration of NO in the flue gas

e :

Control error

e(t) :

Equation error of the ARX model

K :

Cost function

q :

Time shift operator

r :

Air distribution: ratio of primary air to total air

r :

Reference signal (set point)

t s :

Time

u :

Control signal (process input)

\( {\dot{V}}_{\mathrm{A}} \) m3/s:

Total air flow

\( {\dot{V}}_{\mathrm{P}} \) m3/s:

Primary air flow

\( {\dot{V}}_{\mathrm{S}} \) m3/s:

Secondary air flow

y :

Controlled variable

y M :

Controlled variable modeled

ϑ, T K:

Bed temperature

References

  • Åström KJ, Hägglund T (1995) PID controllers: theory, design, and tuning. International Society for Measurement and Control, Research Triangle Park, p 343. ISBN 1556175167

    Google Scholar 

  • Blackman PF (1962) Extremum-seeking regulators. In: Westcott JH (ed) An exposition of adaptive control. Pergamon, Oxford

    Google Scholar 

  • Bunzemeier A (1992) Mathematisches Modell zur regeldynamischen Analyse eines Dampferzeugers mit zirkulierender Wirbelschichtfeuerung. Fortschritt-Bericht VDI, Reihe 6, Nr 273

    Google Scholar 

  • Datta A, Ho M-T, Bhattacharyya SP (2000) Structure and synthesis of PID controllers. Springer, London, p 233. ISBN 1852336145

    Book  MATH  Google Scholar 

  • Dittmar R, Pfeiffer B-M (2006) Modellbasierte Prädiktive Regelung in der industriellen Praxis. Automatisierungstechnik 54(12):590–601

    Article  Google Scholar 

  • Edelmann H (1992) Modellierung der Dynamik und des Regelverhaltens für einen Dampferzeuger mit zirkulierender Wirbelschichtfeuerung. Dissertation Universität GH Siegen. Fortschrittsbericht VDI, Reihe 6, Nr 275

    Google Scholar 

  • Evans W (1954) Control-system dynamics, Electrical and electronic engineering series. McGraw-Hill, New York, p 282. ASIN B00005XDYG

    Google Scholar 

  • Franke R, Doppelhamer J (2006) Online application of Modelica models in the industrial IT extended automation system 800xA, Modelica 2006, 4–5 Sep 2006. The Modelica Association, pp 293–302 https://modelica.org/events/modelica2006/Proceedings/proceedings/Proceedings2006_Vol1.pdf

  • Havlena V, Pachner D (2010) Model-based predictive control of a circulating fluidized bed combustor. In: Szentannai P (ed) Power plant applications of advanced control techniques. ProcessEng, Vienna, pp 43–67. ISBN 978-3-902655-11-0

    Google Scholar 

  • Klefenz G (1986) Automatic control of steam power plants. Bibliographisches Institut, Zürich, p 248. ISBN 9783411016990

    Google Scholar 

  • Klefenz G (1991) Die Regelung von Dampfkraftwerken. BI-Wiss.-Verl, Mannheim, p 240. ISBN 9783411152841

    Google Scholar 

  • O’Dwyer A (2009) Handbook of PI and PID controller tuning rules. Imperial College Press, London, p 608. ISBN 1848162421

    Book  Google Scholar 

  • Ruusunen M (2010) Advanced combustion power stabilization method for a grate-fired biomass boiler. In: Szentannai P (ed) Power plant applications of advanced control techniques. ProcessEng, Vienna, pp 113–134. ISBN 978-3-902655-11-0

    Google Scholar 

  • Smith CL (2009) Practical process control: tuning and troubleshooting. Wiley-Interscience, Hoboken, p 431. ISBN 0470381930

    Book  Google Scholar 

  • Szentannai P (1998) Energetics for the environment: modelling of fluidized bed combustion. In: Gépészet ’98, proceedings of first conference on mechanical engineering, Technical University of Budapest, 28–29 May 1998. Springer Hungarica, Budapest, pp 750–754. ISBN 963 699 078 6 https://www.antikvarium.hu/konyv/aradi-p-csaszi-f-gepeszet-98-1-2-394258?ID=394258

  • Szentannai P (ed) (2010) Power plant applications of advanced control techniques. ProcessEng, Vienna, p 500. ISBN 978-3-902655-11-0

    Google Scholar 

  • Szentannai P (2011) Mathematical modeling and model-based optimum control of circulating fluidized bed combustors. Period Polytech Civ Eng:20–1029 http://www.pp.bme.hu/ci/article/view/467

  • Visioli A (2006) Practical PID control. Springer, London, p 10. ISBN 1846285852

    MATH  Google Scholar 

  • Yu C-C (2006) Autotuning of PID controllers. Springer, London, p 261. ISBN 978-1-84628-036-8

    Google Scholar 

  • Zhanga C, Ordóñez R (2009) Robust and adaptive design of numerical optimization-based extremum seeking control. Automatica 45:634–646

    Article  Google Scholar 

Download references

Acknowledgments

The author is grateful to ProcessEng Engineering GmbH, Vienna, Austria, and to Periodica Polytechnika Civil Engineering, Budapest, Hungary, for permitting to use some materials published by the author earlier in Szentannai (2010, 2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pal Szentannai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Szentannai, P. (2015). Modern Power Plant Control for Energy Conservation, Efficiency Increase, and Financial Benefit. In: Chen, WY., Suzuki, T., Lackner, M. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6431-0_22-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6431-0_22-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6431-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics