Skip to main content

Life Cycle Assessment of Greenhouse Gas Emissions

  • 635 Accesses

Abstract

Life cycle assessments of greenhouse gas emissions have been developed for analyzing products “from cradle to grave”: from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production, and waste management, including CO2 capture and sequestration. Life cycle assessments of greenhouse gas emissions are often part of wider environmental assessments, which also cover other environmental impacts. Such wider-ranging assessments allow for considering “trade-offs” between (reduction of) greenhouse gas emissions and other environmental impacts and co-benefits of reduced greenhouse gas emissions. Databases exist which contain estimates of current greenhouse gas emissions linked to fossil fuel use and to many current agricultural and industrial activities. However, these databases do allow for substantial uncertainties in emission estimates. Assessments of greenhouse gas emissions linked to new processes and products are subject to even greater data-linked uncertainty. Variability in outcomes of life cycle assessments of greenhouse gas emissions may furthermore originate in different choices regarding functional units, system boundaries, time horizons, and the allocation of greenhouse gas emissions to outputs in multi-output processes.

Life cycle assessments may be useful in the identification of life cycle stages that are major contributors to greenhouse gas emissions and of major reduction options, in the verification of alleged climate benefits, and to establish major differences between competing products. They may also be helpful in the analysis and development of options, policies, and innovations aimed at mitigation of climate change.

The main findings from available life cycle assessments of greenhouse gas emissions are summarized, offering guidance in mitigating climate change. Future directions in developing life cycle assessment and its application are indicated. These include better handling of indirect effects, of uncertainty, and of changes in carbon stock of recent biogenic origin and improved comprehensiveness in dealing with climate warming.

This is a preview of subscription content, log in via an institution.

References

  • Andersson K, Ohlsson T, Olsson P (1998) Screening life cycle assessment (LCA) of tomato ketchup: a case study. J Cleaner Prod 6:277–288

    Article  Google Scholar 

  • Andrae ASG, Andersen O (2010) Life cycle assessments of consumer electronics – are they consistent? Int J Life Cycle Assess 15:827–836

    Article  Google Scholar 

  • Andreae MO, Gelenesér A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6:3131–3148

    Article  Google Scholar 

  • Ardente F, Beccali G, Cellura M, Lo Brano V (2005) Life cycle assessment of a solar thermal collector. Renew Energy 30:1031–1054

    Article  Google Scholar 

  • Bala A, Raugei M, Benviste G, Gazulla C, Fullana-i-Palmer P (2010) Simplified tools for global warming potential evaluation: when ‘good enough’ is best. Int J Life Cycle Assess 15:489–498

    Article  Google Scholar 

  • Barber WPF (2009) Influence of anaerobic digestion on the carbon footprint of various sewage sludge treatment options. Water Environ J 25:170–179

    Article  Google Scholar 

  • Basset-Mens C, Anibar L, Durand P, van der Werf HMG (2006) Spatialised fate factors for nitrate in catchments: modeling approach and implication for LCA results. Sci Total Environ 367:367–382

    Article  Google Scholar 

  • Batlles FI, Rosiek S, Munoz I, Fernandez-Alba AB (2010) Environmental assessment of the CIESOL solar building after two years of operation. Environ Sci Technol 44:3587–3593

    Article  Google Scholar 

  • Bertram M, Buxmann K, Furrer P (2009) Analysis of greenhouse gas emissions related to aluminum transport applications. Int J Life Cycle Assess 14:S62–S69

    Article  Google Scholar 

  • Björklund A, Finnveden G (2005) Recycling revisited: life cycle comparisons of global warming impact and total energy use of waste management strategies. Resour Conserv Recycl 44:309–317

    Article  Google Scholar 

  • Blengini GA, di Carlo T (2010) The changing role of life cycle phases, subsystems and materials in the LCA of low energy buildings. Energy Build 42:869–880

    Article  Google Scholar 

  • Boulay A, Bulle C, Bayart B (2011) Regional characterization of fresh water use in LCA: modeling direct impacts on human health. Environ Sci Technol 45:8948–8957

    Article  Google Scholar 

  • Boyd SB, Horvath A, Dornfeld D (2009) Lifecycle energy demand and global warming potential of computational logic. Environ Sci Technol 43:7303–7309

    Article  Google Scholar 

  • Boyd SB, Horvath A, Dornfeld DA (2010) Life-cycle assessment of computational logic produced from 1995 through 2010. Environ Res Lett 5:014011 (8 pp)

    Article  Google Scholar 

  • Brakkee KW, Huijbregts MAJ, Eickhout B, Hendriks AJ, van de Meent D (2008) Characterisation factors for greenhouse gases at a midpoint level including indirect effects based on calculations with the IMAGE model. Int J Life Cycle Assess 13:191–201

    Article  Google Scholar 

  • Brehmer B, Boom RM, Sanders J (2009) Maximum fossil fuel feedstock replacement potential of petrochemicals via biorefineries. Chem Eng Des 87:1103–1119

    Google Scholar 

  • Bruun TB, de Neergaard A, Lawrence D, Ziegler AD (2009) Environmental consequences of the demise in swidden cultivation in southeast Asia: carbon storage and soil quality. Hum Ecol 37:375–388

    Article  Google Scholar 

  • Carlsson-Kanyama A, Gonzalez AD (2009) Potential contributions of food consumption patterns to climate change. Am J Clin Nutr 89:1704S–1709S

    Article  Google Scholar 

  • Chapman L (2007) Transport and climate change: a review. J Transp Geogr 15:354–367

    Article  Google Scholar 

  • Chester M, Horvath A (2010) Life-cycle assessment of high-speed rail: the case of California. Environ Res Lett 5:014003

    Article  Google Scholar 

  • Choi B, Shin H, Lee S, Hur T (2006) Life cycle assessment of a personal computer and its effective recycling rate. Int J Life Cycle Assess 11:122–128

    Article  Google Scholar 

  • Christensen TH, Gentil E, Boldrin A, Larsen AW, Weidema BP, Hauschild M (2009) C balance, carbon dioxide emissions and global warming potentials in LCA-modelling of waste management systems. Waste Manage Res 27:707–715

    Article  Google Scholar 

  • Ciantar C, Hadfield M (2000) An environmental evaluation of mechanical systems using environmentally acceptable refrigerants. Int J Life Cycle Assess 5:209–220

    Article  Google Scholar 

  • Citherlet S, Defaux T (2007) Energy and environmental comparison of three variants of a family house during its whole life span. Build Environ 42:591–598

    Article  Google Scholar 

  • Citherlet S, Di Guglielmo F, Gay J (2000) Window and advanced glazing systems in life cycle assessment. Energy Build 32:225–234

    Article  Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819

    Article  Google Scholar 

  • Crutzen PJ, Mosier AR, Smith KA, Winiwater W (2007) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys Discuss 7:11191–11205

    Article  Google Scholar 

  • Cullen JM, Allwood JM (2009) The role of washing machines in life cycle assessment studies. J Ind Ecol 13(1):27–37

    Article  Google Scholar 

  • Curran MA (2003) Do bio-based products move us towards sustainability? A look at three USEPA case studies. Environ Prog 22:277–292

    Article  Google Scholar 

  • De Eicker MO, Hischier R, Hurni H, Zah R (2010) Using non local databases for the environmental assessment of industrial activities: the case of Latin America. Environ Impact Assess Rev 30:145–157

    Article  Google Scholar 

  • De Gorter H, Just DR (2010) The social costs and benefits of biofuels: the intersection of environmental, energy and agricultural policy. Appl Econ Perspect Policy 32:4–32

    Article  Google Scholar 

  • De Gracia A, Rincón L, Castell A, Jiménez M, Boer D, Medrano M, Cabeza LG (2010) Life cycle assessment of the inclusion of phase change materials in experimental buildings. Energy Build 42:1517–1523

    Article  Google Scholar 

  • De Koning A, Schowanek D, Dewaele J, Weisbrod A, Guinee J (2010) Uncertainties in a carbon footprint model for detergents: quantifying the confidence in a comparative result. Int J Life Cycle Assess 15:79–89

    Article  Google Scholar 

  • De Schryver AM, Brakkee KW, Goedkoop MJ, Huijbregts MAJ (2009) Characterization factors for global warming in life cycle assessment based on damages to humans and ecosystems. Environ Sci Technol 43:1689–1695

    Article  Google Scholar 

  • De Vries M, de Boer IJM (2010) Comparing environmental impacts for livestock products: a review of life cycle assessments. Livest Sci 128:1–11

    Article  Google Scholar 

  • Demou E, Hellweg S, Wilson P, Hammond SK, McKone TE (2009) Evaluating indoor exposure modeling alternatives for LCA: a case study in the vehicle repair industry. Environ Sci Technol 43:5804–5810

    Article  Google Scholar 

  • Denholm P, Kulcinski GL (2004) Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems. Energy Convers Manage 45:2153–2172

    Article  Google Scholar 

  • Douglas GA, Harrison GF, Chick JP (2008) Life cycle assessment of Seagen marine current turbine. J Eng Marit Environ 222M:1–12

    Google Scholar 

  • Duan H, Eugster M, Hischier R, Streicher-Porte Li J (2009) Life cycle assessment study of a Chinese desktop personal computer. Sci Total Environ 407:1755–1764

    Article  Google Scholar 

  • ELCD (2008) European commission joint research centre – European reference life cycle data system. http://lct.jrc.ec.europa.eu/lcanfohub/dataset

  • Erlandsson M, Levin P, Myhre L (1997) Energy and environmental consequences of an additional wall insulation of a dwelling. Build Environ 32:129–136

    Article  Google Scholar 

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238

    Article  Google Scholar 

  • Fava J, Baer S, Cooper J (2009) Increasing demands for life cycle assessments in North America. J Ind Ecol 13:491–494

    Article  Google Scholar 

  • Fehnann J (2000) Industrial non-energy, non-CO2 greenhouse gas emissions. Technol Forecast Soc 63:313–334

    Article  Google Scholar 

  • Finkbeiner M, Hoffmann R, Ruhland K, Liebhart D, Stark B (2006) Application of life cycle assessment for the environmental certificate of the Mercedes-Benz S class. Int J Life Cycle Assess 11:240–246

    Article  Google Scholar 

  • Finnveden G, Hauschild MZ, Ekvall T, Guine J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manage 91:1–21

    Article  Google Scholar 

  • Foley JM, Rozendal RA, Hertle CK, Lant PA, Rabaey K (2010) Life cycle assessment of high rate anaerobic treatment, microbial fuel cell, and microbial electrolysis cells. Environ Sci Technol 44:3629–3637

    Article  Google Scholar 

  • Frederici M, Ulgati S, Basosi R (2009) Air versus terrestrial transport modalities: an energy and environmental comparison. Energy 24:1493–1503

    Article  Google Scholar 

  • Frischknecht R, Jungbluth N, Althaus H, Doka G, Dones R, Heck T, Hellweg S, Hischier R, Nemecek T, Rebitzer G, Spielmann M (2005) The ecoinvent database; overview and methodological framework. Int J Life Cycle Assess 10:3–9

    Article  Google Scholar 

  • Frischknecht R, Büsser S, Krewitt W (2009) Environmental assessment of future technologies: how to trim LCA to fit this goal? Int J Life Cycle Assess 14:584–588

    Article  Google Scholar 

  • Froese RL, Shonnard DR, Miller CA, Koers KP, Johnson DM (2010) An evaluation of greenhouse gas mitigation options for coal-fired power plants in the US Great Lakes States. Bio-mass Bioenergy 34:251–262

    Article  Google Scholar 

  • Fruergaard T, Astrup T, Ekvall T (2009) Energy use and recovery in waste management and implications for accounting greenhouse gases and global warming contributions. Waste Manage Res 27:724–737

    Article  Google Scholar 

  • Gandreault C, Samson R, Stuart PR (2010) Energy decision making in a pulp and paper mill: selection of LCA system boundary. Int J Life Cycle Assess 15:198–211

    Article  Google Scholar 

  • Geisler G, Hellweg S, Hungerbühler K (2005) Uncertainty analysis in life cycle assessment (LCA): case study on plant-protection products and implications for decision making. Int J Life Cycle Assess 10:184–192

    Article  Google Scholar 

  • Gong X, Nie Z, Wang Z, Zuo T (2008) Research and development of Chinese LCA database and LCA software. Rare Met 25(6):101–104

    Article  Google Scholar 

  • Gössling S, Garrod B, Aall C, Hille J, Peeters P (2010) Food management in tourism: reducing tourism’s carbon ‘footprint’. Tourism Manage 32:534–543

    Article  Google Scholar 

  • Granovskii M, Dincer I, Rosen MA (2006) Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles. J Power Sources 159:1186–1193

    Article  Google Scholar 

  • Greene DL (2011) Rebound 2007: analysis of U.S. light duty vehicle travel statistics. Energy Policy. doi:10.1016/j.enpol.2010.03.083

    Google Scholar 

  • Guinee JB (ed) (2002) Handbook on life cycle assessment. Kluwer, Dordrecht

    Google Scholar 

  • Haines A, McMichael AJ, Smith KR, Roberts I, Woodcock J, Markandya A, Armstoing BG, Campbell-Lendrum D, Dangour AD, Davies M, Bruce N, Tonne C, Barrett M, Wilkinson P (2009) Public health benefits of strategies to reduce greenhouse-gas emissions: overview and implications for policy makers. Lancet 374:2104–2114

    Article  Google Scholar 

  • Hansen J, Sato M, Kharecha P, Beerling D, Berner R, Masson-Delmotte V, Pagani M, Raymao M, Royer DL, Zachos JC (2008) Target atmospheric CO2: where should humanity aim. Open Atmos Sci J 2:217–231

    Article  Google Scholar 

  • Harrison GP, Maclean EJ, Karamanlis S, Ochoa LF (2010) Life cycle assessment of the transmission network in Great Britain. Energy Policy 38:3622–3631

    Article  Google Scholar 

  • Havlik P, Schneider UA, Schmid E, Böttcher H, Fritz S, Skalsky R, Aoki K, de Cara S, Kinderman G, Kraxner F, Leduc S, McCallum I, Mosnier A, Sauer T, Obersteiner M (2011) Global land-use implications of first and second generation biofuel targets. Energ Policy. doi:10.1016/j.enpol.2010.03.030

    Google Scholar 

  • Heijungs R, Suh S (2002) The computational structure of life cycle assessment. Kluwer, Dordrecht

    Book  Google Scholar 

  • Hellweg S, Fischer U, Hofstetter TB, Hungerbühler K (2005) Site-dependent fate assessment in LCA: transport of heavy metals in soil. J Cleaner Prod 13:341–361

    Article  Google Scholar 

  • Hellweg S, Demou E, Bruzzi R, Meijer A, Rosenbaum RK, Huijbregts MA, McKone TE (2009) Integrating human indoor air pollutant exposure within life cycle impact assessment. Environ Sci Technol 43:1670–1679

    Article  Google Scholar 

  • Hertel TW, Golub AA, Jones AD, O’Hare M, Plevin RJ, Kammen DM (2010) Effects of US maize ethanol on global land use and greenhouse gas emissions: estimating market-mediated responses. Bioscience 60:223–231

    Article  Google Scholar 

  • Hertwich E (2009) A concise guide to the biofuels environmental conundrum. J Ind Ecol 13:990–991

    Article  Google Scholar 

  • Hertwich EG (2013) Addressing biogenic greenhouse gas emissions from hydropower in LCA. Environ Sci Technol 47:9604–9611

    Article  Google Scholar 

  • Hertwich EG, McKone TE, Pease WS (2000) A systematic uncertainty analysis of an evaluative fate and exposure model. Risk Anal 20:439–454

    Article  Google Scholar 

  • Highwood EJ, Kinnersly R (2006) When smoke gets in your eyes. The multiple impacts of atmospheric black carbon on climate, air quality and health. Environ Int 32:560–566

    Article  Google Scholar 

  • Hischier R, Walser T (2012) Life cycle assessment of engineered nanomaterials: state of the art and strategies to overcome existing gaps. Sci Total Environ 425:271–282

    Article  Google Scholar 

  • Hoglmeier K, Weber-Blaschke G, Richter K (2014) Utilization of recovered wood in cascades versus utilization of primary wood- a comparison with life cycle assessment using system expansion. Int J Life Cycle Assess. doi:10.1007/s11367-014-0774-6

    Google Scholar 

  • Hong J, Shaked S, Rosenbaum RK, Jolliet O (2010) Analytical uncertainty propagation in life cycle inventory and impact assessment: application to an automobile front panel. Int J Life Cycle Assess 15:499–510

    Article  Google Scholar 

  • Hospido A, Davis J, Berlin J, Sonesson U (2010) A review of methodological issues affecting LCA of novel food products. Int J Life Cycle Assess 15:44–52

    Article  Google Scholar 

  • Huang Y, Bird R, Heidrich O (2009) Development of the life cycle assessment tool for construction and maintenance of asphalt pavements. J Cleaner Prod 17:283–296

    Article  Google Scholar 

  • Huijbregts MAJ, Thissen UMJ, Guinee JB, Jager T, Kalf D, van der Meent D, Ragas AMJ, Wegener Sleeswijk A, Reijnders L (2000) Priority assessment of toxic substances in life cycle assessment. Part I: calculation of toxicity potentials for 181 substances with the nested multi-media fate exposure and effects model USES-LCA. Chemosphere 41:541–573

    Article  Google Scholar 

  • Huijbregts MAJ, Norris G, Bretz K, Giroth A, Maurice B, von Bahr B, Weidema B, de Beaufort ASH (2001) Framework for modeling data uncertainty in life cycle inventories. Int J Life Cycle Assess 6:127–132

    Article  Google Scholar 

  • Huijbregts MAJ, Gilijamse W, Ragas AMJ, Reijders L (2003) Evaluating uncertainty in environmental life cycle assessment. A case study comparing two insulation options for a Dutch one family dwelling. Environ Sci Technol 37:2600–2608

    Article  Google Scholar 

  • Huijbregts MAJ, Rombouts LJA, Hellweg S, Frischknecht R, Hendriks J, van de Meent D, Ragas AJM, Reijnders L, Struijs J (2006) Is cumulative fossil energy demand a useful indicator for the environmental performance of products? Environ Sci Technol 40:641–648

    Article  Google Scholar 

  • Huijbregts MAJ, Hellweg S, Hendriks HWM, Hungerbühler K, Hendriks AJ (2010) Cumulative energy demand as predictor for the environmental burden of commodity production. Environ Sci Technol 44:2189–2196

    Article  Google Scholar 

  • Ingraffea AR, Wells MT, Santoro RL, Shonkoff SBC (2014) Assessment and risk analysis of casing and cement impairment in oil and gas wells in Pennsylvania, 2000–2012. Proc Natl Acad Sci U S A 111:10955–10960

    Article  Google Scholar 

  • IPPC Working Group I (2013) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge, UK/New York

    Google Scholar 

  • Iribarren D, Hospido A, Moreira MT, Feijoo G (2010) Carbon footprint of canned mussels from a business-to-consumer approach. A starting point for mussel processors and policy makers. Environ Sci Policy. doi:10.1016/j.envsci.2010.05.003

    Google Scholar 

  • Jansen B, Thollier K (2006) Bottom-up life cycle assessment of product consumption in Belgium. J Ind Ecol 10(3):41–55

    Article  Google Scholar 

  • Jaramillo P, Samaras C, Wakeley H, Meisterling K (2009) Greenhouse gas implications of using coal for transportation: life cycle assessment of coal-to-liquids, plug-in hybrids, and hydrogen pathways. Energ Policy 37:2689–2695

    Article  Google Scholar 

  • Johnson RW (2004) The effect of blowing agent choice on energy use and global warming impact of refrigerator. Int J Refrig 27:794–799

    Article  Google Scholar 

  • Johnson E (2008) Disagreement over carbon footprints: a comparison of electric and LPG forklifts. Energ Policy 36:1569–1573

    Article  Google Scholar 

  • Jorquera O, Kiperstock A, Sales EA, Embirucu M, Ghirardi ML (2010) Comparative energy life cycle-analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413

    Article  Google Scholar 

  • Jury C, Benetto E, Koster D, Schmitt B, Welfring J (2010) Life cycle assessment of biogas production by monofermentation of energy crops and injection into the natural gas grid. Biomass Bioenergy 34:54–66

    Article  Google Scholar 

  • Kakudate K, Kajikawa Y, Adachi Y, Suzuki T (2002) Calculation model of CO2 emissions for Japanese passenger cars. Int J Life Cycle Assess 7:85–93

    Article  Google Scholar 

  • Kendall A, Chang B, Sharpe B (2009) Accounting for time-dependent effects in biofuel life cycle greenhouse gas emissions calculations. Environ Sci Technol 43:7142–7147

    Article  Google Scholar 

  • Khoo HH, Tan RBH, Chng KWL (2010) Environmental impacts of conventional plastic and bio-based carrier bags. Int J Life Cycle Assess 15:284–293

    Article  Google Scholar 

  • Kim S, Dale BE (2008) Energy and greenhouse gas profiles of polyhydroxybutyrates derived from corn grain: a life cycle perspective. Environ Sci Technol 42:7690–7695

    Article  Google Scholar 

  • Kleijn R, van der Voet E, Udo de Haes HA (2008) The need for combining IEA and IE tools: the potential effects of a global ban on PVC on climate change. Ecol Econ 65:266–281

    Article  Google Scholar 

  • Kloverpris JH, Baltzer K, Nielsen PH (2010) Life cycle inventory modeling of land use induced by crop consumption. Part 2: example of wheat consumption in Brazil, China, Denmark and the USA. Int J Life Cycle Assess 15:90–103

    Article  Google Scholar 

  • Koellner T, de Baan L (2013) UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int J Life Cycl Assess 18:1188–1202

    Article  Google Scholar 

  • Kofoworola OF, Gheewala SH (2008) Environmental life cycle assessment of a commercial office building in Thailand. Int J Life Cycle Assess 13:498–511

    Article  Google Scholar 

  • Kurdikar D, Fourner L, Slate SC, Pater M, Gruys KJ, Gerngross TU, Coulon R (2000) Greenhouse gas profile of a plastic material from a genetically modified plant. J Ind Ecol 4(3):107–122

    Article  Google Scholar 

  • Kushnir D, Sanden BA (2008) Energy requirements of carbon nanoparticle production. J Ind Ecol 12:360–375

    Article  Google Scholar 

  • Lankey RL, McMichael FC (2000) Life-cycle methods for comparing primary and rechargeable batteries. Environ Sci Technol 34:2299–2304

    Article  Google Scholar 

  • Laurent A, Olsen SI, Hauschild MZ (2010) Carbon footprint as environmental performance indicator for the manufacturing industry. CIRP Ann Manuf Technol 59:37–40

    Article  Google Scholar 

  • Lave L, McLean H, Hendrickson C, Lankey R (2000) Life-cycle analysis of alternative fuel/propulsion technologies. Environ Sci Technol 34:3598–3605

    Article  Google Scholar 

  • Lee DS, Pitari G, Grewe V, Gierens K, Penner JE, Petzold A, Prather MJ, Schumann U, Bais A, Berntsen T, Iachetti D, Lim LL, Sausen R (2010a) Transport impacts on atmosphere and climate: aviation. Atmos Environ 44:4678–4734

    Article  Google Scholar 

  • Lee J, An S, Cha K, Hur T (2010b) Life cycle environmental and economic analyses of a hydrogen station with wind energy. Int J Hydrogen Energy 35:2213–2225

    Article  Google Scholar 

  • Lenzen M (2008) Double counting in life cycle calculations. J Ind Ecol 12:583–599

    Article  Google Scholar 

  • Lifset R, Anes R (2009) The indirect effects of industrial ecology. J Ind Ecol 13:347–349

    Article  Google Scholar 

  • Lund H, Mathiesen BV, Christensen P, Schmidt JH (2010) Energy system analysis of marginal electricity supply in consequential LCA. Int J Life Cycle Assess 15:260–271

    Article  Google Scholar 

  • Luz SM, Caldeira-Pires A, Ferrao PMC (2010) Environmental benefits of substituting talc by sugarcane bagasse fibers as reinforcement in polypropylene composites: ecodesign and LCA strategy for automotive components. Resour Conserv Recycl 54:1135–1141

    Article  Google Scholar 

  • Markandya A, Armstrong BG, Hales S, Chiabai A, Criqui P, Mima S, Tonne C, Wilkinson P (2009) Public health benefits of strategies to reduce greenhouse-gas emissions: low carbon electricity generation. Lancet 374:2006–2015

    Article  Google Scholar 

  • Martinez E, Sanz F, Pellegrini S, Jimenez E, Blanco J (2009) Life cycle assessment of a multi-megawatt wind turbine. Renew Energy 34:667–673

    Article  Google Scholar 

  • McConnell JR, Edwards R, Kok GL, Flanner MG, Zender CS, Salzman ES, Banta JR, Pasteris DR, Carter MM, Kahl JDW (2007) 20th-century industrial black carbon emissions altered Arctic climate forcing. Science 317:1381–1384

    Article  Google Scholar 

  • Meyer DE, Curran MA, Gonzalez MA (2009) An examination of existing data for the industrial manufacture and use of nanocomponents and their role in life cycle impact of nanoproducts. Environ Sci Technol 43:1256–1263

    Article  Google Scholar 

  • Ming J, Xiao C, Cachier H, Qin D, Qin X, Li Z, Pu J (2009) Black carbon (BC) in the snow and glaciers in west China and its potential effects on albedo. Atmos Res 92:114–123

    Article  Google Scholar 

  • Mohr N, Meijer A, Huijbregts MAJ, Reijnders L (2009) Environmental impact of thin-film GaInP/GaAs and multicrystalline silicon solar modules produces with solar energy. Int J Life Cycle Assess 14:225–235

    Article  Google Scholar 

  • Munoz I, Campra F, Fernandez-Alba AR (2010) Including CO2-emission equivalence of changes in land surface albedo in life cycle assessment. Methodology and case study on greenhouse agriculture. Int J Life Cycle Assess 15:672–681

    Article  Google Scholar 

  • Myrhe G, Shindell D, Bréon F, Fuglestvedt J, Huang J, Koch D, Lamarque J, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report on the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York

    Google Scholar 

  • Nakamura S, Kondo Y (2006) Hybrid LCC of appliances with different energy efficiencies. Int J Life Cycle Assess 11:305–314

    Article  Google Scholar 

  • Nakinawa C, Graedel TE (2002) Life cycle and matrix analyses for re-refined oil in Japan. Int J Life Cycle Assess 7:95–102

    Article  Google Scholar 

  • Narita N, Nakahara Y, Morimoto M, Aoki R, Suda S (2004) Current LCA database development in Japan – results of the LCA project. Int J Life Cycle Assess 9:355–359

    Article  Google Scholar 

  • Nishioka Y, Levy JI, Norris GA (2006) Integrating air pollution, climate change, and economics in a risk based life-cycle analysis. A case study of residential insulation. J Hum Ecol Risk Assess 12:552–571

    Article  Google Scholar 

  • Nugent D, Sovakool BK (2014) Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: a critical meta-survey. Energy Policy 65:229–244

    Article  Google Scholar 

  • Ortiz O, Castells F, Sonnemann G (2010) Operational energy in the life cycle of residential dwellings: the experience of Spain and Colombia. Appl Energy 87:673–680

    Article  Google Scholar 

  • Perez-Ramirez J, Kapteijn F, Schöffel K, Moulijn JA (2003) Formation and control of N2O in nitric acid production. Where do we stand today? Appl Catal B Environ 44:117–151

    Article  Google Scholar 

  • Petron G, Frost G, Miller BR, Hirsch AI (2012) Hydrocarbon emissions characterization in the Colorado Front Range: a pilot study. J Geophys Res 117, D04304

    Google Scholar 

  • Pottimg J, Hauschild M (2005) Background for spatial differentiation in LCA impact assessment – the EDIP2003 methodology. Danish Ministry of the Environment. www.mst.dk/Udgiv/publications/2005/87-7614-581-6/pdf

  • Rebitzer G, Ekvall T, Frischknecht R, Hunkeler D, Norris G, Rydberg T, Suh S, Schmidt W, Pennington DW, Weidema B (2004) Life cycle assessment. Part I: framework, goal and scope definition, inventory analysis and applications. Environ Int 30:701–720

    Article  Google Scholar 

  • Rehbitzer G, Buxmann K (2005) The role and implementation of LCA within life cycle management at Alcan. J Cleaner Prod 13:1327–1335

    Article  Google Scholar 

  • Rehr AP, Small MJ, Matthews HS, Hendrickson CT (2010) Economic sources and spatial distribution of airborne chromium risks in the US. Environ Sci Technol 44:2131–2137

    Article  Google Scholar 

  • Reijnders L (2006) Is increased energy utilization linked to greater cultural complexity? Energy utilization by Australian aboriginals and traditional swidden agriculturalists. Environ Sci 3:207–220

    Article  Google Scholar 

  • Reijnders L (2009a) Fuels for the future. J Integr Environ Sci 6:279–294

    Article  Google Scholar 

  • Reijnders L (2009b) Are forestation, biochar and landfilled biomass adequate offsets for the climate effect of burning fossil fuels. Energy Policy 37:2839–2841

    Article  Google Scholar 

  • Reijnders L (2010) Transport biofuel yields from food and lignocellulosic C4 crops. Biomass Bioenergy 34:152–155

    Article  Google Scholar 

  • Reijnders L (2013) Lipid-based liquid biofuels from autotrophic microalgae: energetic and environmental performance. WIREs Energy Environ 2:73–85

    Article  Google Scholar 

  • Reijnders L, Huijbregts MAJ (2003) Choices in calculating life cycle emissions of carbon containing gases associated with forest derived biofuels. J Cleaner Prod 11:527–532

    Article  Google Scholar 

  • Reijnders L, Huijbregts MAJ (2009) Biofuels for road transport. A seed to wheel perspective. Springer, London

    Google Scholar 

  • Reijnders L, Soret S (2003) Quantification of the environmental impact of different dietary protein choices. Am J Clin Nutr 78:664S–668S

    Google Scholar 

  • Röös E, Sundberg C, Hansson P (2010) Uncertainties in the carbon footprint of food products: a case study on table potatoes. Int J Life Cycle Assess 15:478–488

    Article  Google Scholar 

  • Rossello-Batle B, Moia A, Cladera A, Martinez V (2010) The energy use, CO2 emissions and waste throughout the life cycle of a sample of hotels in the Balearic Islands. Energy Build 42:547–558

    Article  Google Scholar 

  • Rydh CJ, Karlström M (2002) Life cycle inventory of recycling portable nickel-cadmium batteries. Resour Conserv Recycl 34:289–309

    Article  Google Scholar 

  • Sanden B, Kalström M (2007) Positive and negative feedback in consequential life cycle assessment. J Cleaner Prod 15:1469–1481

    Article  Google Scholar 

  • Saner D, Juraske R, Kubert M, Blum P, Hellweg S, Bayer P (2010) Is it only CO2 that matters? A life cycle perspective on shallow geothermal systems. Renewable Sustainable Energy Rev 14:1798–1813

    Article  Google Scholar 

  • Sann TE, Palanisamy K, Nazrain M, Ani FN (2006) Study of carbon dioxide emission during combustion of biodiesel. In: International conference on energy and environment 2006, Kajang, pp 65–70

    Google Scholar 

  • Sathre R, O’Connor JO (2010) Meta-analysis of greenhouse gas displacement factors of wood product substitution. Environ Sci Policy 13:104–114

    Article  Google Scholar 

  • Sayagh S, Ventura A, Hoang T, Francois D, Jullien A (2009) Sensitivity of the LCA allocation procedure for BFS recycled into pavement structures. Resour Conserv Recycl 54:348–358

    Article  Google Scholar 

  • Schipper L, Grubb M (2000) On the rebound? Feedback between energy intensities and energy uses in IEA countries. Energy Policy 28:367–388

    Article  Google Scholar 

  • Schmidt H (2009) Carbon footprinting, labelling and life cycle assessment. Int J Life Cycle Assess 14:S6–S9

    Article  Google Scholar 

  • Schöpp W, Potting J, Hauschild M, Blok K (1998) Site-dependent life cycle impact assessment of acidification. J Ind Ecol 8(2):63–87

    Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land use change. Science 319:1238–1240

    Article  Google Scholar 

  • Sekiya A, Omamoto S (2010) Evaluation of carbon dioxide equivalent values for greenhouse gases: CEWN as a new indicator replacing GWP. J Fluorine Chem 131:384–386

    Article  Google Scholar 

  • Song J, Lee K (2010) Development of a low carbon product design system based on embedded GHG emissions. Resour Conserv Recycl 54:547–556

    Article  Google Scholar 

  • Spatari S, Bagley DM, McLean HL (2010) Life cycle evaluation of emerging lignocellulosic ethanol conversion technologies. Bioresour Technol 101:654–667

    Article  Google Scholar 

  • Spielman M, Althaus H (2007) Can a prolonged use of a passenger car reduce environmental burdens? Life cycle analysis of Swiss passenger cars. J Cleaner Prod 15:1122–1134

    Article  Google Scholar 

  • Stern N (2006) Stern review on the economics of climate change. HM Treasury, London. http://apo.org.au/

  • Tabone MD, Gregg JJ, Beckman EJ, Landis AE (2010) Sustainability metrics: life cycle assessment and green design in polymers. Environ Sci Technol 44:82-64–82-69

    Article  Google Scholar 

  • Thiesen J, Christensen TS, Kristensen TC, Andersen RD, Brunoe B, Gregersen TK, Thrane M, Weidema BP (2008) Rebound effect of price differences. Int J Life Cycle Assess 13:104–114

    Article  Google Scholar 

  • Tukker A, Eder P, Duh S (2006) Environmental impact of products. J Ind Ecol 10(3):183–198

    Article  Google Scholar 

  • Upham P, Dendier L, Bleda M (2010) Carbon labeling of grocery products: public perceptions and potential emissions reductions. J Cleaner Prod 19:348–355

    Article  Google Scholar 

  • van der Velden NM, Patel MK, Vogtländer JG (2014) LCA benchmarking study on textiles made of cotton, polyester, nylon, acryl or elastane. Int J Life Cycle Assess 19:331–356

    Article  Google Scholar 

  • Verones F, Pfister S, Hellweg S (2013) Quantifying area changes of internationally important wetlands due to water consumption in LCA. Environ Sci Technol 47:9799–9807

    Article  Google Scholar 

  • Walmsley JD, Godbold DL (2010) Stump harvesting for bioenergy – a review of the environmental impacts. Forestry 83:17–38

    Article  Google Scholar 

  • Weber CL, Matthews HS (2008) Quantifying the global and distributional aspects of the American household carbon footprint. Ecol Econ 66:379–391

    Article  Google Scholar 

  • Weber CL, Jaramillo P, Marriott J, Samaras C (2010) Life cycle assessment and grid electricity; what do we know and what can we know. Environ Sci Technol 44:1895–1901

    Article  Google Scholar 

  • Weiss M, Haufe J, Carus M, Brandao M, Bringezu S, Hermann B, Patel MK (2012) A review of environmental impacts of biobased materials. J Ind Ecol 16:S169–S181

    Article  Google Scholar 

  • Wernet G, Conradt S, Isenring HP, Jimenez-Gonzales C, Hungerbühler K (2010) Life cycle assessment of fine chemical production: a case study of pharmaceutical synthesis. Int J Life Cycle Assess 15:294–303

    Article  Google Scholar 

  • Weston RE (1996) Possible greenhouse effects of tetrafluoromethane and carbon dioxide emitted from aluminum production. Atmos Environ 30:2901–2910

    Article  Google Scholar 

  • Williams ED, Weber CL, Hawkins TR (2009) Hybrid framework for managing uncertainty in life cycle inventories. J Ind Ecol 13:928–944

    Article  Google Scholar 

  • Wu P, Xia B, Zhao X (2014) The importance of use and end-of -life phases to the life cycle greenhouse gas (GHG) emissions of concrete – a review. Renew Sustain Energy Rev 37:360–369

    Article  Google Scholar 

  • Yung WKC, Chan HK, Choi ACK, Yue TM, Mahzar MI (2008) An environmental assessment framework with respect to the requirements of energy using products directive. Proc Inst Mech Eng 222B:643–651

    Article  Google Scholar 

  • Zhang Y, McKechnie J, Cormier D, Lyng R, Mabee W, Ogino A, Maclean HR (2010) Life cycle emissions and cost of producing electricity from coal, natural gas and wood pellets in Ontario, Canada. Environ Sci Technol 44:538–544

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Reijnders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Reijnders, L. (2015). Life Cycle Assessment of Greenhouse Gas Emissions. In: Chen, WY., Suzuki, T., Lackner, M. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6431-0_2-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6431-0_2-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6431-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Life Cycle Assessment of Greenhouse Gas Emissions
    Published:
    20 May 2021

    DOI: https://doi.org/10.1007/978-1-4614-6431-0_2-3

  2. Original

    Life Cycle Assessment of Greenhouse Gas Emissions
    Published:
    14 September 2015

    DOI: https://doi.org/10.1007/978-1-4614-6431-0_2-2