Advertisement

Phenylketonuria

  • Harold Chen
Living reference work entry

Abstract

Classical phenylketonuria (PKU) is a rare metabolic disorder, resulting from a deficiency of a liver enzyme, phenylalanine hydroxylase. The deficiency of the enzyme leads to elevated phenylalanine (Phe) levels in the blood and various tissues including the brain. The incidence in Caucasians is approximately one in 10,000, giving a heterozygote frequency of one in 50 to one in 70. About one in 15,000 infants is born with PKU in the United States.

Keywords

Newborn Screening Phenylalanine Hydroxylase Large Neutral Amino Acid Phenylalanine Level Dihydropteridine Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Al Hafid, N., & Christodoulou, J. (2015). Phenylketonuria: A review of current and future treatments. Translational Pediatrics, 4, 304–317.PubMedPubMedCentralGoogle Scholar
  2. Baumeister, A. A., & Baumeister, A. A. (1998). Dietary treatment of destructive behavior associated with hyperphenylalaninaemia. Clinical Neuropharmacology, 21, 18–27.PubMedGoogle Scholar
  3. Blau, N., van Spronsen, F. J., & Levy, H. L. (2010). Phenylketonuria. Lance, 376, 1417–1427.CrossRefGoogle Scholar
  4. Blau, N., Hennermann, J. B., Langenbeck, U., et al. (2011). Diagnosis, classification, and genetics of phenylketonuria and tetrahydrobiopterin (BH4) deficiencies. Molecular Genetics and Metabolism, 104(Suppl), S2–S9.CrossRefPubMedGoogle Scholar
  5. Camp, K. M., Parisi, M. A., Acosta, P. B., et al. (2014). Phenylketonuria scientific review conference: State of the science and future research needs. Molecular Genetics and Metabolism, 112, 87–122.CrossRefPubMedGoogle Scholar
  6. Clarke, T. R. (2003). The maternal phenylketonuria: A summary of progress and challenges for the future. Pediatrics, 112, 1584–1587.CrossRefPubMedGoogle Scholar
  7. Cleary, M. A., Walter, J. H., Wraight, J. E., et al. (1994). Magnetic resonance imaging in phenylketonuria. Lancet, 344, 87–90.CrossRefPubMedGoogle Scholar
  8. Dougherty, F. E., & Levy, H. L. (1999). Present newborn screening for phenylketonuria. Mental Retardation and Developmental Disabilities Research Reviews, 5, 144–149.CrossRefGoogle Scholar
  9. Dyer, C. A. (1999). Pathophysiology of phenylketonuria. Mental Retardation and Developmental Disabilities Research Reviews, 5, 104–112.CrossRefGoogle Scholar
  10. Dyer, C. A., Kendler, A., Philibotte, T., et al. (1996). Evidence for central nervous system glial cell plasticity in phenylketonuria. Journal of Neuropathology and Experimental Neurology, 55, 795–814.CrossRefPubMedGoogle Scholar
  11. Eavri, R., & Lorberboum-Galski, H. (2007). A novel approach for enzyme replacement therapy. The use of phenylalanine hydroxylase-based fusion proteins for the treatment of phenylketonuria. Journal of Biological Chemistry, 282, 23402–23409.CrossRefPubMedGoogle Scholar
  12. Eisensmith, R. C., Martinez, D. R., Kuzmin, A. I., et al. (1996). Molecular basis of phenylketonuria and a correlation between genotype and phenotype in a heterogeneous Southeastern US population. Pediatrics, 97, 512–516.PubMedGoogle Scholar
  13. Etzel, M. R. (2004). Manufacture and use of dairy protein fractions. Journal of Nutrition, 134, 996S–1002S.PubMedGoogle Scholar
  14. Feillet, F., & Agostoni, C. (2010). Nutritional issues in treating phenylketonuria. Journal of Inherited Metabolic Disease, 33, 659–664.Google Scholar
  15. Fitzgerald, B., Morgan, J., Keene, N., et al. (2000). An investigation into diet treatment for adults with previously untreated phenylketonuria and severe intellectual disability. Journal of Intellectual Disability Research, 44, 53–59.CrossRefPubMedGoogle Scholar
  16. Gámez, A., Wang, L., Straub, M., et al. (2004). Toward PKU enzyme replacement therapy: PEGylation with activity retention for three forms of recombinant phenylalanine hydroxylase. Molecular Therapy, 9, 124–129.CrossRefPubMedGoogle Scholar
  17. Grosse, S. D. (2010). Late-treated phenylketonuria and partial reversibility of intellectual impairment. Child Development, 81, 200–211.CrossRefPubMedGoogle Scholar
  18. Güttler, F., Azen, C., Guldberg, P., et al. (1999). Relationship among genotype, biochemical phenotype, and cognitive performance in females with phenylalanine hydroxylase deficiency: Report from the Maternal Phenylketonuria Collaborative Study. Pediatrics, 104, 258–262.CrossRefPubMedGoogle Scholar
  19. Güttler, F., Azen, C., Guldberg, P., et al. (2003). Impact of the phenylalanine hydroxylase gene on maternal phenylketonuria outcome. Pediatrics, 112, 1530–1533.PubMedGoogle Scholar
  20. Hanley, W. B., Platt, L. D., Bachman, R. P., et al. (1999). Undiagnosed maternal phenylketonuria: The need for prenatal selective screening or case finding. American Journal of Obstetrics and Gynecology, 180, 986–994.CrossRefPubMedGoogle Scholar
  21. Hellekson, K. L. (2001). NIH consensus statement on phenylketonuria. American Family Physician, 63, 1430–1432.PubMedGoogle Scholar
  22. Hoeks, M. P. A., den Heijer, M., & Janssen, M. C. H. (2009). Adult issues in phenylketonuria. Netherlands Journal of Medicine, 67, 1–7.Google Scholar
  23. Howell, R. R., Chakravarti, A., Dawson, G., et al. (2001). National institutes of health consensus development conference statement: Phenylketonuria: Screening and management. Pediatrics, 108(4), 972–982, 16–18 Oct 2000.CrossRefGoogle Scholar
  24. Hvas, A. M., Nexo, E., & Nielsen, J. B. (2006). Vitamin B12 and vitamin B6 supplementation is needed among adults with phenylketonuria. Journal of Inherited Metabolic Disease, 29, 47–53.CrossRefPubMedGoogle Scholar
  25. Joseph, B., & Dyer, C. A. (2003). Relationship between myelin production and dopamine synthesis in the PKU mouse brain. Journal of Neurochemistry, 86, 615–626.CrossRefPubMedGoogle Scholar
  26. Kalsner, L. R., Rohr, F. J., Strauss, K. A., et al. (2001). Tyrosine supplementation in phenylketonuria: Diurnal blood tyrosine levels and presumptive brain influx of tyrosine and other large neutral amino acids. Journal of Pediatrics, 139, 421–427.CrossRefPubMedGoogle Scholar
  27. Kaufman, S., Berlow, S., Summer, G. K., et al. (1978). Hyperphenylalaninemia due to a deficiency of biopterin. New England Journal of Medicine, 299, 673–679.CrossRefPubMedGoogle Scholar
  28. Koch, R. K. (1999). Issues in newborn screening for phenylketonuria. American Family Physician, 605, 1462–1466.Google Scholar
  29. Koch, R., Hanley, W., Levy, H., et al. (2003a). The maternal phenylketonuria international study: 1984–2002. Pediatrics, 112, 1523–1529.PubMedGoogle Scholar
  30. Koch, R., Moseley, K. D., Yano, S., et al. (2003b). Large neutral amino acid therapy and phenylketonuria: A promising approach to treatment. Molecular Genetics and Metabolism, 79, 110–113.CrossRefPubMedGoogle Scholar
  31. Landolt, M. A., Nuoffer, J.-M., Steinmann, B., et al. (2002). Quality of life and psychologic adjustment in children and adolescents with early treated phenylketonuria can be normal. Journal of Pediatrics, 140, 516–521.CrossRefPubMedGoogle Scholar
  32. Lechardeur, D., & Lukacs, G. L. (2002). Intracellular barriers to nonviral gene transfer. Current Gene Therapy, 2, 183–194.CrossRefPubMedGoogle Scholar
  33. Levy, H. L., & Ghavami, M. (1996). Maternal phenylketonuria: A metabolic teratogen. Teratology, 53, 176–184.CrossRefPubMedGoogle Scholar
  34. Levy, H. L., Lobbregt, D., Barnes, P. D., et al. (1996a). Maternal phenylketonuria: Magnetic resonance imaging of the brain in offspring. Journal of Pediatrics, 128, 770–775.CrossRefPubMedGoogle Scholar
  35. Levy, H. L., Lobbregt, D., Platt, L. D., et al. (1996b). Fetal ultrasonography in maternal PKU. Prenatal Diagnosis, 16, 599–604.CrossRefPubMedGoogle Scholar
  36. Mabry, C. C. (1990). Phenylketonuria: Contemporary screening and diagnosis. Annals of Clinical and Laboratory Science, 20, 393–397.PubMedGoogle Scholar
  37. Matalon, R., & Michals, K. (1991). Phenylketonuria: Screening, treatment and maternal PKU. Clinical Biochemistry, 24, 337–342.CrossRefPubMedGoogle Scholar
  38. Matalon, R., Michals-Matalon, K., Bhatia, G., et al. (2006). Large neutral amino acids in the treatment of phenylketonuria (PKU). Journal of Inherited Metabolic Disease, 29, 732–738.CrossRefPubMedGoogle Scholar
  39. Matalon, R., Michals-Matalon, K., Bhatia, G., et al. (2007). Double blind placebo control trial of large neutral amino acids in treatment of PKU: Effect on blood phenylalanine. Journal of Inherited Metabolic Disease, 30, 153–158.CrossRefPubMedGoogle Scholar
  40. Mitchell, J. J. (2013). Phenylalanine hydroxylase deficiency. GeneReviews. Updated 31 Jan 2013. Available at: http://www.ncbi.nlm.nih.gov/books/NBK1504/
  41. Mitchell, J. J., Trakadis, Y. J., & Scriver, C. R. (2011). Phenylalanine hydroxylase deficiency. Genetics in Medicine, 13, 697–707.CrossRefPubMedGoogle Scholar
  42. Modan-Moses, D., Vered, I., Schwartz, G., et al. (2007). Peak bone mass in patients with phenylketonuria. Journal of Inherited Metabolic Disease, 30, 202–208.CrossRefPubMedGoogle Scholar
  43. National Institutes of Health Consensus Development Panel, & National Institutes of Health Consensus Development Conference Statement. (2001). Phenylketonuria: Screening and management. Pediatrics, 108, 972–982, 16–18 Oct 2000.CrossRefGoogle Scholar
  44. Ney, D. M., Gleason, S. T., van Calcar, S. C., et al. (2009). Nutritional management of PKU with glycomacropeptide from cheese whey. Journal of Inherited Metabolic Disease, 32, 32–39.CrossRefPubMedGoogle Scholar
  45. Ney, D. M., Stroup, B. M., Clayton, M. K., et al. (2016). Glycomacropeptide for nutritional management of phenylketonuria: A randomized, controlled, crossover trial. American Journal of Clinical Nutrition, 104, 334. [Epub ahead of print].CrossRefPubMedGoogle Scholar
  46. Niidome, T., & Huang, L. (2002). Gene therapy progress and prospects: Nonviral vectors. Gene Therapy, 9, 1647–1652.CrossRefPubMedGoogle Scholar
  47. Paine, R. S. (1957). The variability in manifestations of untreated patients with phenylketonuria. Pediatrics, 20, 290–302.PubMedGoogle Scholar
  48. Pietz, J., Dunckelmann, R., Rupp, A., et al. (1998). Neurological outcome in adult patients with early-treated phenylketonuria. European Journal of Pediatrics, 157, 824–830.CrossRefPubMedGoogle Scholar
  49. Pietz, J., Kreis, R., Rupp, A., et al. (1999). Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. Journal of Clinical Investigation, 103, 1169–1178.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Platt, L. D., Koch, R., Hanley, W. B., et al. (2000). The international study of pregnancy outcome in women with maternal phenylketonuria: Report of a 12-year study. American Journal of Obstetrics and Gynecology, 182, 326–333.CrossRefPubMedGoogle Scholar
  51. Rey, F., Blandin-Savoja, F., & Rey, J. (1976). Atypical phenylketonuria with normal dihydropteridine reductase activity. New England Journal of Medicine, 295, 1138–1139.CrossRefPubMedGoogle Scholar
  52. Robinson, M., White, F., Cleary, M. A., et al. (2002). Increased risk of vitamin B12 deficiency in patients with phenylketonuria on an unrestricted or relaxed diet. Journal of Pediatrics, 136, 545–547.CrossRefGoogle Scholar
  53. Rouse, B., Azen, C., Koch, R., et al. (1997). Maternal phenylketonuria collaborative study (MPKUCS) offspring: Facial anomalies, malformations, and early neurological sequelae. American Journal of Medical Genetics, 69, 89–95.CrossRefPubMedGoogle Scholar
  54. Rouse, B., Matalon, R., Koch, R., et al. (2000). Maternal phenylketonuria syndrome: Congenital heart defects, microcephaly, and developmental outcomes. Journal of Pediatrics, 136(1), 57–61.CrossRefPubMedGoogle Scholar
  55. Sanjurjo, P., Aldamiz, L., Georgi, G., et al. (2003). Dietary threonine reduces plasma phenylalanine levels in patients with hyperphenylalaninemia. Journal of Pediatric Gastroenterology and Nutrition, 36, 23–26.CrossRefPubMedGoogle Scholar
  56. Sarkissian, C. N., Shao, Z., Blain, F., et al. (1999). A different approach to treatment of phenylketonuria: Phenylalanine degradation with recombinant phenylalanine ammonia lyase. Proceedings of National Academy of Sciences of USA, 96, 2339–2344.CrossRefGoogle Scholar
  57. Schaub, J., Däumling, S., Curtius, H. C., et al. (1978). Tetrahydrobiopterin therapy of atypical phenylketonuria due to defective dihydrobiopterin biosynthesis. Archives of Disease in Childhood, 53, 674–676.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Schindeler, S., Ghosh-Jerath, S., Thompson, S., et al. (2007). The effects of large neutral amino acid supplements in PKU: An MRS and neuropsychological study. Molecular Genetics and Metabolism, 91, 48–54.CrossRefPubMedGoogle Scholar
  59. Schircks, B., Bieri, J. H., & Viscontini, M. (1976). Preparation and characterisation of pure 5,6,7,8-tetrahydro-l-neopterine and 5,6,7,8-tetrahydro-d-monapterine (author’s transl). Helvetica Chimica Acta, 59, 248–252.CrossRefPubMedGoogle Scholar
  60. Schuck, P. F., Malgarin, F., Cararo, J. H., et al. (2015). Phenylketonuria pathophysiology: on the role of metabolic alterations. Agin and Disease, 6, 1–10.CrossRefGoogle Scholar
  61. Scriver, C. R., & Kaufman, S. (2001). Hyperphenylalaninemia: Phenylalanine hydroxylase deficiency, Chapter 77. In C. R. Scriver, A. L. Beaudet, W. S. Sly, & D. Valle (Eds.), The metabolic & molecular bases of inherited disease (8th ed., pp. 1667–1724). New York: McGraw-Hill.Google Scholar
  62. Sener, R. N. (2003). Diffusion MRI findings in phenylketonuria. European Radiology, 13, 226–229.CrossRefGoogle Scholar
  63. Sinai, L. N., Kim, S. C., Casey, R., et al. (1995). Phenylketonuria screening: Effect of early newborn discharge. Pediatrics, 96, 605–608.PubMedGoogle Scholar
  64. Singh, R. H., Rohr, F., Frazier, D., et al. (2014). Recommendations for the nutrition management of phenylalanine hydroxylase deficiency. Genetics in Medicine, 16, 121–131.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Strisciuglio, P., & Concolino, D. (2014). New strategies for the treatment of phenylketonuria (PKU). Metabolites, 2014, 1007–1017.CrossRefGoogle Scholar
  66. Thompson, A. J., Smith, I., Youl, B. D., et al. (1990). Neurological deterioration in young adults with phenylketonuria. Lancet, 336, 602–605.CrossRefPubMedGoogle Scholar
  67. Vajro, P., Striscìuglio, P., Houssin, D., et al. (1993). Correction of phenylketonuria after liver transplantation in a child with cirrhosis. New England Journal of Medicine, 29, 329–363.Google Scholar
  68. van Calcar, S. C., MacLeod, E. L., Gleason, S. T., et al. (2009). Improved nutritional management of phenylketonuria by using a diet containing glycomacropeptide compared with amino acids. American Journal of Clinical Nutrition, 89, 1068–1077.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Vockley, J., Andersson, H. C., Antshel, K. M., et al. (2014). Phenylalanine hydroxylase deficiency: Diagnosis and management guideline. Genetics in Medicine, 16, 188–200.CrossRefPubMedGoogle Scholar
  70. Waisbren, S. E., Rohr, F., Anastasoaie, V., et al. (2015). Maternal phenylketonuria: Long-term outcomes in offspring and post-pregnancy maternal characteristics. JIMD Reports, 21, 23–33.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Weglage, J., Funders, B., Wilken, B., et al. (1993). School performance and intellectual outcome in adolescents with phenylketonuria. Acta Paediatrica, 81, 582–586.CrossRefGoogle Scholar
  72. Yagi, H., Ogura, T., Mizukami, H., et al. (2011). Complete restoration of phenylalanine oxidation in phenylketonuria mouse by a self-complementary adeno-associated virus vector. Journal of Gene Medicine, 13, 114–122.CrossRefPubMedGoogle Scholar
  73. Yannicelli, S., & Ryan, A. (1995). Improvements in behaviour and physical manifestations in previously untreated adults with phenylketonuria using a phenylalanine-restricted diet: A national survey. Journal of Inherited Metabolic Disease, 18, 131–134.CrossRefPubMedGoogle Scholar
  74. Zaki, O. K., El-Wakeel, L., Ebeid, Y., et al. (2016). The use of glycomacropeptide in dietary management of phenylketonuria. Journal of Nutrition and Metabolism, 2016, 1–5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Medical GeneticsShriners Hospitals for ChildrenShreveportUSA
  2. 2.Perinatal and Clinical Genetics, Department of PediatricsLSU Health Sciences CenterShreveportUSA

Personalised recommendations